These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. An Improved Unscented Kalman Filter Based Decoder for Cortical Brain-Machine Interfaces. Li S; Li J; Li Z Front Neurosci; 2016; 10():587. PubMed ID: 28066170 [TBL] [Abstract][Full Text] [Related]
7. Adaptive decoding for brain-machine interfaces through Bayesian parameter updates. Li Z; O'Doherty JE; Lebedev MA; Nicolelis MA Neural Comput; 2011 Dec; 23(12):3162-204. PubMed ID: 21919788 [TBL] [Abstract][Full Text] [Related]
8. sPyNNaker: A Software Package for Running PyNN Simulations on SpiNNaker. Rhodes O; Bogdan PA; Brenninkmeijer C; Davidson S; Fellows D; Gait A; Lester DR; Mikaitis M; Plana LA; Rowley AGD; Stokes AB; Furber SB Front Neurosci; 2018; 12():816. PubMed ID: 30524220 [TBL] [Abstract][Full Text] [Related]
9. Adaptive Neural Decoder for Prosthetic Hand Control. Montgomery AE; Allen JM; Elbasiouny SM Front Neurosci; 2021; 15():590775. PubMed ID: 33897340 [TBL] [Abstract][Full Text] [Related]
10. Continuous closed-loop decoder adaptation with a recursive maximum likelihood algorithm allows for rapid performance acquisition in brain-machine interfaces. Dangi S; Gowda S; Moorman HG; Orsborn AL; So K; Shanechi M; Carmena JM Neural Comput; 2014 Sep; 26(9):1811-39. PubMed ID: 24922501 [TBL] [Abstract][Full Text] [Related]
11. Nengo and Low-Power AI Hardware for Robust, Embedded Neurorobotics. DeWolf T; Jaworski P; Eliasmith C Front Neurorobot; 2020; 14():568359. PubMed ID: 33162886 [TBL] [Abstract][Full Text] [Related]
12. A Novel Robotic Controller Using Neural Engineering Framework-Based Spiking Neural Networks. Marrero D; Kern J; Urrea C Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257584 [TBL] [Abstract][Full Text] [Related]
13. Supervised Learning in All FeFET-Based Spiking Neural Network: Opportunities and Challenges. Dutta S; Schafer C; Gomez J; Ni K; Joshi S; Datta S Front Neurosci; 2020; 14():634. PubMed ID: 32670012 [TBL] [Abstract][Full Text] [Related]
14. Closed-loop cortical control of virtual reach and posture using Cartesian and joint velocity commands. Young D; Willett F; Memberg WD; Murphy B; Rezaii P; Walter B; Sweet J; Miller J; Shenoy KV; Hochberg LR; Kirsch RF; Ajiboye AB J Neural Eng; 2019 Apr; 16(2):026011. PubMed ID: 30523839 [TBL] [Abstract][Full Text] [Related]
15. Benchmarking neuromorphic systems with Nengo. Bekolay T; Stewart TC; Eliasmith C Front Neurosci; 2015; 9():380. PubMed ID: 26539076 [TBL] [Abstract][Full Text] [Related]
16. A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors. Nageswaran JM; Dutt N; Krichmar JL; Nicolau A; Veidenbaum AV Neural Netw; 2009; 22(5-6):791-800. PubMed ID: 19615853 [TBL] [Abstract][Full Text] [Related]
17. Using a Low-Power Spiking Continuous Time Neuron (SCTN) for Sound Signal Processing. Bensimon M; Greenberg S; Haiut M Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33557214 [TBL] [Abstract][Full Text] [Related]
18. BP-based supervised learning algorithm for multilayer photonic spiking neural network and hardware implementation. Zhang Y; Xiang S; Han Y; Guo X; Zhang W; Tan Q; Han G; Hao Y Opt Express; 2023 May; 31(10):16549-16559. PubMed ID: 37157731 [TBL] [Abstract][Full Text] [Related]
19. A recurrent neural network for closed-loop intracortical brain-machine interface decoders. Sussillo D; Nuyujukian P; Fan JM; Kao JC; Stavisky SD; Ryu S; Shenoy K J Neural Eng; 2012 Apr; 9(2):026027. PubMed ID: 22427488 [TBL] [Abstract][Full Text] [Related]
20. Efficient Point-Process Modeling of Spiking Neurons for Neuroprosthesis. Li W; Qian C; Qi Y; Wang Y; Wang Y; Pan G Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6198-6202. PubMed ID: 34892531 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]