These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 24352611)

  • 1. Spiking Neural Network Decoder for Brain-Machine Interfaces.
    Dethier J; Gilja V; Nuyujukian P; Elassaad SA; Shenoy KV; Boahen K
    Int IEEE EMBS Conf Neural Eng; 2011; ():. PubMed ID: 24352611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Brain-Machine Interface Operating with a Real-Time Spiking Neural Network Control Algorithm.
    Dethier J; Nuyujukian P; Eliasmith C; Stewart T; Elassaad SA; Shenoy KV; Boahen K
    Adv Neural Inf Process Syst; 2011; 2011():2213-2221. PubMed ID: 25309106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and validation of a real-time spiking-neural-network decoder for brain-machine interfaces.
    Dethier J; Nuyujukian P; Ryu SI; Shenoy KV; Boahen K
    J Neural Eng; 2013 Jun; 10(3):036008. PubMed ID: 23574919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Bidirectional Brain-Machine Interface Featuring a Neuromorphic Hardware Decoder.
    Boi F; Moraitis T; De Feo V; Diotalevi F; Bartolozzi C; Indiveri G; Vato A
    Front Neurosci; 2016; 10():563. PubMed ID: 28018162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time brain-machine interface in non-human primates achieves high-velocity prosthetic finger movements using a shallow feedforward neural network decoder.
    Willsey MS; Nason-Tomaszewski SR; Ensel SR; Temmar H; Mender MJ; Costello JT; Patil PG; Chestek CA
    Nat Commun; 2022 Nov; 13(1):6899. PubMed ID: 36371498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Improved Unscented Kalman Filter Based Decoder for Cortical Brain-Machine Interfaces.
    Li S; Li J; Li Z
    Front Neurosci; 2016; 10():587. PubMed ID: 28066170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive decoding for brain-machine interfaces through Bayesian parameter updates.
    Li Z; O'Doherty JE; Lebedev MA; Nicolelis MA
    Neural Comput; 2011 Dec; 23(12):3162-204. PubMed ID: 21919788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. sPyNNaker: A Software Package for Running PyNN Simulations on SpiNNaker.
    Rhodes O; Bogdan PA; Brenninkmeijer C; Davidson S; Fellows D; Gait A; Lester DR; Mikaitis M; Plana LA; Rowley AGD; Stokes AB; Furber SB
    Front Neurosci; 2018; 12():816. PubMed ID: 30524220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive Neural Decoder for Prosthetic Hand Control.
    Montgomery AE; Allen JM; Elbasiouny SM
    Front Neurosci; 2021; 15():590775. PubMed ID: 33897340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous closed-loop decoder adaptation with a recursive maximum likelihood algorithm allows for rapid performance acquisition in brain-machine interfaces.
    Dangi S; Gowda S; Moorman HG; Orsborn AL; So K; Shanechi M; Carmena JM
    Neural Comput; 2014 Sep; 26(9):1811-39. PubMed ID: 24922501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nengo and Low-Power AI Hardware for Robust, Embedded Neurorobotics.
    DeWolf T; Jaworski P; Eliasmith C
    Front Neurorobot; 2020; 14():568359. PubMed ID: 33162886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Robotic Controller Using Neural Engineering Framework-Based Spiking Neural Networks.
    Marrero D; Kern J; Urrea C
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supervised Learning in All FeFET-Based Spiking Neural Network: Opportunities and Challenges.
    Dutta S; Schafer C; Gomez J; Ni K; Joshi S; Datta S
    Front Neurosci; 2020; 14():634. PubMed ID: 32670012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Closed-loop cortical control of virtual reach and posture using Cartesian and joint velocity commands.
    Young D; Willett F; Memberg WD; Murphy B; Rezaii P; Walter B; Sweet J; Miller J; Shenoy KV; Hochberg LR; Kirsch RF; Ajiboye AB
    J Neural Eng; 2019 Apr; 16(2):026011. PubMed ID: 30523839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benchmarking neuromorphic systems with Nengo.
    Bekolay T; Stewart TC; Eliasmith C
    Front Neurosci; 2015; 9():380. PubMed ID: 26539076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors.
    Nageswaran JM; Dutt N; Krichmar JL; Nicolau A; Veidenbaum AV
    Neural Netw; 2009; 22(5-6):791-800. PubMed ID: 19615853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using a Low-Power Spiking Continuous Time Neuron (SCTN) for Sound Signal Processing.
    Bensimon M; Greenberg S; Haiut M
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33557214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BP-based supervised learning algorithm for multilayer photonic spiking neural network and hardware implementation.
    Zhang Y; Xiang S; Han Y; Guo X; Zhang W; Tan Q; Han G; Hao Y
    Opt Express; 2023 May; 31(10):16549-16559. PubMed ID: 37157731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A recurrent neural network for closed-loop intracortical brain-machine interface decoders.
    Sussillo D; Nuyujukian P; Fan JM; Kao JC; Stavisky SD; Ryu S; Shenoy K
    J Neural Eng; 2012 Apr; 9(2):026027. PubMed ID: 22427488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Point-Process Modeling of Spiking Neurons for Neuroprosthesis.
    Li W; Qian C; Qi Y; Wang Y; Wang Y; Pan G
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6198-6202. PubMed ID: 34892531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.