These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 24352611)
21. Activities of daily living with bionic arm improved by combination training and latching filter in prosthesis control comparison. Paskett MD; Brinton MR; Hansen TC; George JA; Davis TS; Duncan CC; Clark GA J Neuroeng Rehabil; 2021 Feb; 18(1):45. PubMed ID: 33632237 [TBL] [Abstract][Full Text] [Related]
22. Compact Hardware Synthesis of Stochastic Spiking Neural Networks. Galán-Prado F; Morán A; Font J; Roca M; Rosselló JL Int J Neural Syst; 2019 Oct; 29(8):1950004. PubMed ID: 30880526 [TBL] [Abstract][Full Text] [Related]
23. A Low-Power Spiking Neural Network Chip Based on a Compact LIF Neuron and Binary Exponential Charge Injector Synapse Circuits. Asghar MS; Arslan S; Kim H Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34210045 [TBL] [Abstract][Full Text] [Related]
24. Brain-inspired spiking neural networks for decoding and understanding muscle activity and kinematics from electroencephalography signals during hand movements. Kumarasinghe K; Kasabov N; Taylor D Sci Rep; 2021 Jan; 11(1):2486. PubMed ID: 33510245 [TBL] [Abstract][Full Text] [Related]
25. Leveraging historical knowledge of neural dynamics to rescue decoder performance as neural channels are lost: "Decoder hysteresis". Kao JC; Ryu SI; Shenoy KV Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1061-6. PubMed ID: 26736448 [TBL] [Abstract][Full Text] [Related]
26. NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data. Kasabov NK Neural Netw; 2014 Apr; 52():62-76. PubMed ID: 24508754 [TBL] [Abstract][Full Text] [Related]
27. Neuromorphic Decoding of Spinal Motor Neuron Behaviour During Natural Hand Movements for a New Generation of Wearable Neural Interfaces. Tanzarella S; Iacono M; Donati E; Farina D; Bartolozzi C IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3035-3046. PubMed ID: 37450365 [TBL] [Abstract][Full Text] [Related]
28. Discrimination of EMG Signals Using a Neuromorphic Implementation of a Spiking Neural Network. Donati E; Payvand M; Risi N; Krause R; Indiveri G IEEE Trans Biomed Circuits Syst; 2019 Oct; 13(5):795-803. PubMed ID: 31251192 [TBL] [Abstract][Full Text] [Related]
29. Spiking Neural Networks Based on OxRAM Synapses for Real-Time Unsupervised Spike Sorting. Werner T; Vianello E; Bichler O; Garbin D; Cattaert D; Yvert B; De Salvo B; Perniola L Front Neurosci; 2016; 10():474. PubMed ID: 27857680 [TBL] [Abstract][Full Text] [Related]
30. Competitive Learning in a Spiking Neural Network: Towards an Intelligent Pattern Classifier. Lobov SA; Chernyshov AV; Krilova NP; Shamshin MO; Kazantsev VB Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31963143 [TBL] [Abstract][Full Text] [Related]
31. Benchmarking Highly Parallel Hardware for Spiking Neural Networks in Robotics. Steffen L; Koch R; Ulbrich S; Nitzsche S; Roennau A; Dillmann R Front Neurosci; 2021; 15():667011. PubMed ID: 34267622 [TBL] [Abstract][Full Text] [Related]
32. Toward Building Hybrid Biological/in silico Neural Networks for Motor Neuroprosthetic Control. Kocaturk M; Gulcur HO; Canbeyli R Front Neurorobot; 2015; 9():8. PubMed ID: 26321943 [TBL] [Abstract][Full Text] [Related]
33. Decoding Movements from Cortical Ensemble Activity Using a Long Short-Term Memory Recurrent Network. Tseng PH; Urpi NA; Lebedev M; Nicolelis M Neural Comput; 2019 Jun; 31(6):1085-1113. PubMed ID: 30979355 [TBL] [Abstract][Full Text] [Related]
34. An Interclass Margin Maximization Learning Algorithm for Evolving Spiking Neural Network. Dora S; Sundaram S; Sundararajan N IEEE Trans Cybern; 2019 Mar; 49(3):989-999. PubMed ID: 29994611 [TBL] [Abstract][Full Text] [Related]
35. RescueSNN: enabling reliable executions on spiking neural network accelerators under permanent faults. Putra RVW; Hanif MA; Shafique M Front Neurosci; 2023; 17():1159440. PubMed ID: 37123371 [TBL] [Abstract][Full Text] [Related]
36. NeuroSEE: A Neuromorphic Energy-Efficient Processing Framework for Visual Prostheses. Wang C; Yang J; Sawan M IEEE J Biomed Health Inform; 2022 Aug; 26(8):4132-4141. PubMed ID: 35503849 [TBL] [Abstract][Full Text] [Related]
38. Spiking neural networks for handwritten digit recognition-Supervised learning and network optimization. Kulkarni SR; Rajendran B Neural Netw; 2018 Jul; 103():118-127. PubMed ID: 29674234 [TBL] [Abstract][Full Text] [Related]
39. On-Chip Training Spiking Neural Networks Using Approximated Backpropagation With Analog Synaptic Devices. Kwon D; Lim S; Bae JH; Lee ST; Kim H; Seo YT; Oh S; Kim J; Yeom K; Park BG; Lee JH Front Neurosci; 2020; 14():423. PubMed ID: 32733180 [TBL] [Abstract][Full Text] [Related]
40. In-silico development and assessment of a Kalman filter motor decoder for prosthetic hand control. Gamal M; Mousa MH; Eldawlatly S; Elbasiouny SM Comput Biol Med; 2021 May; 132():104353. PubMed ID: 33831814 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]