BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

429 related articles for article (PubMed ID: 24352616)

  • 21. An exonic splicing silencer is involved in the regulated splicing of glucose 6-phosphate dehydrogenase mRNA.
    Szeszel-Fedorowicz W; Talukdar I; Griffith BN; Walsh CM; Salati LM
    J Biol Chem; 2006 Nov; 281(45):34146-58. PubMed ID: 16980303
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MicroRNA-216a/217-induced epithelial-mesenchymal transition targets PTEN and SMAD7 to promote drug resistance and recurrence of liver cancer.
    Xia H; Ooi LL; Hui KM
    Hepatology; 2013 Aug; 58(2):629-41. PubMed ID: 23471579
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SIRT2 activates G6PD to enhance NADPH production and promote leukaemia cell proliferation.
    Xu SN; Wang TS; Li X; Wang YP
    Sci Rep; 2016 Sep; 6():32734. PubMed ID: 27586085
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of miR-122 in the dysregulation of glucose-6-phosphate dehydrogenase (G6PD) expression in hepatocellular cancer.
    Barajas JM; Reyes R; Guerrero MJ; Jacob ST; Motiwala T; Ghoshal K
    Sci Rep; 2018 Jun; 8(1):9105. PubMed ID: 29904144
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Loss of phosphatase and tensin homolog enhances cell invasion and migration through AKT/Sp-1 transcription factor/matrix metalloproteinase 2 activation in hepatocellular carcinoma and has clinicopathologic significance.
    Sze KM; Wong KL; Chu GK; Lee JM; Yau TO; Ng IO
    Hepatology; 2011 May; 53(5):1558-69. PubMed ID: 21520171
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of the splicing of glucose-6-phosphate dehydrogenase precursor mRNA by polyunsaturated fatty acids.
    Tao H; Szeszel-Fedorowicz W; Amir-Ahmady B; Gibson MA; Stabile LP; Salati LM
    J Biol Chem; 2002 Aug; 277(34):31270-8. PubMed ID: 12072438
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanism of glucose-6-phosphate dehydrogenase-mediated regulation of coronary artery contractility.
    Ata H; Rawat DK; Lincoln T; Gupte SA
    Am J Physiol Heart Circ Physiol; 2011 Jun; 300(6):H2054-63. PubMed ID: 21398595
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nutritional regulation of the glucose-6-phosphate dehydrogenase gene is mediated by a nuclear posttranscriptional mechanism.
    Hodge DL; Salati LM
    Arch Biochem Biophys; 1997 Dec; 348(2):303-12. PubMed ID: 9434742
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NeuroD1 promotes tumor cell proliferation and tumorigenesis by directly activating the pentose phosphate pathway in colorectal carcinoma.
    Li Z; He Y; Li Y; Li J; Zhao H; Song G; Miyagishi M; Wu S; Kasim V
    Oncogene; 2021 Dec; 40(50):6736-6747. PubMed ID: 34657129
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Emerging Roles of the Metabolic Regulator G6PD in Human Cancers.
    Ahamed A; Hosea R; Wu S; Kasim V
    Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139067
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pentose phosphate pathway activation via HSP27 phosphorylation by ATM kinase: A putative endogenous antioxidant defense mechanism during cerebral ischemia-reperfusion.
    Yamamoto Y; Hosoda K; Imahori T; Tanaka J; Matsuo K; Nakai T; Irino Y; Shinohara M; Sato N; Sasayama T; Tanaka K; Nagashima H; Kohta M; Kohmura E
    Brain Res; 2018 May; 1687():82-94. PubMed ID: 29510140
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glucose 6-phosphate dehydrogenase is regulated through c-Src-mediated tyrosine phosphorylation in endothelial cells.
    Pan S; World CJ; Kovacs CJ; Berk BC
    Arterioscler Thromb Vasc Biol; 2009 Jun; 29(6):895-901. PubMed ID: 19359662
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PTEN regulates angiogenesis and VEGF expression through phosphatase-dependent and -independent mechanisms in HepG2 cells.
    Tian T; Nan KJ; Wang SH; Liang X; Lu CX; Guo H; Wang WJ; Ruan ZP
    Carcinogenesis; 2010 Jul; 31(7):1211-9. PubMed ID: 20430845
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Zoledronic acid inhibits the pentose phosphate pathway through attenuating the Ras-TAp73-G6PD axis in bladder cancer cells.
    Wang X; Wu G; Cao G; Yang L; Xu H; Huang J; Hou J
    Mol Med Rep; 2015 Sep; 12(3):4620-4625. PubMed ID: 26126921
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crocidolite asbestos inhibits pentose phosphate oxidative pathway and glucose 6-phosphate dehydrogenase activity in human lung epithelial cells.
    Riganti C; Aldieri E; Bergandi L; Fenoglio I; Costamagna C; Fubini B; Bosia A; Ghigo D
    Free Radic Biol Med; 2002 May; 32(9):938-49. PubMed ID: 11978496
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Failure to increase glucose consumption through the pentose-phosphate pathway results in the death of glucose-6-phosphate dehydrogenase gene-deleted mouse embryonic stem cells subjected to oxidative stress.
    Filosa S; Fico A; Paglialunga F; Balestrieri M; Crooke A; Verde P; Abrescia P; Bautista JM; Martini G
    Biochem J; 2003 Mar; 370(Pt 3):935-43. PubMed ID: 12466018
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cholesterol biosynthesis supports the growth of hepatocarcinoma lesions depleted of fatty acid synthase in mice and humans.
    Che L; Chi W; Qiao Y; Zhang J; Song X; Liu Y; Li L; Jia J; Pilo MG; Wang J; Cigliano A; Ma Z; Kuang W; Tang Z; Zhang Z; Shui G; Ribback S; Dombrowski F; Evert M; Pascale RM; Cossu C; Pes GM; Osborne TF; Calvisi DF; Chen X; Chen L
    Gut; 2020 Jan; 69(1):177-186. PubMed ID: 30954949
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deficiency of the X-inactivation escaping gene
    Zheng Q; Li P; Zhou X; Qiang Y; Fan J; Lin Y; Chen Y; Guo J; Wang F; Xue H; Xiong J; Li F
    Theranostics; 2021; 11(18):8674-8691. PubMed ID: 34522206
    [No Abstract]   [Full Text] [Related]  

  • 39. Targeting glucose-6-phosphate dehydrogenase by 6-AN induces ROS-mediated autophagic cell death in breast cancer.
    Li Y; Zheng F; Zhang Y; Lin Z; Yang J; Han X; Feng Y; Pei X; Li F; Liu Q; Yan L; Li T; Zhang Y; Li D; Fu Z; Wang C; Sun Q; Li C
    FEBS J; 2023 Feb; 290(3):763-779. PubMed ID: 36048131
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The pentose phosphate pathway plays an essential role in supporting human sperm capacitation.
    Miraglia E; Lussiana C; Viarisio D; Racca C; Cipriani A; Gazzano E; Bosia A; Revelli A; Ghigo D
    Fertil Steril; 2010 May; 93(7):2437-40. PubMed ID: 19819434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.