BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 24352853)

  • 21. Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batteries.
    Wang SX; Yang L; Stubbs LP; Li X; He C
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12275-82. PubMed ID: 24256294
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Energy storage studies on InVO4 as high performance anode material for Li-ion batteries.
    Reddy MV; Wen BL; Loh KP; Chowdari BV
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7777-85. PubMed ID: 23869790
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanostructured Si(₁-x)Gex for tunable thin film lithium-ion battery anodes.
    Abel PR; Chockla AM; Lin YM; Holmberg VC; Harris JT; Korgel BA; Heller A; Mullins CB
    ACS Nano; 2013 Mar; 7(3):2249-57. PubMed ID: 23432354
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A High-Performance Lithium-Ion Capacitor Based on 2D Nanosheet Materials.
    Li S; Chen J; Cui M; Cai G; Wang J; Cui P; Gong X; Lee PS
    Small; 2017 Feb; 13(6):. PubMed ID: 27893190
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.
    Blanc F; Leskes M; Grey CP
    Acc Chem Res; 2013 Sep; 46(9):1952-63. PubMed ID: 24041242
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High to ultra-high power electrical energy storage.
    Sherrill SA; Banerjee P; Rubloff GW; Lee SB
    Phys Chem Chem Phys; 2011 Dec; 13(46):20714-23. PubMed ID: 21997843
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrochemical properties and computations of stable radicals of the heavy group 14 elements (Si, Ge, and Sn).
    Becker JY; Lee VY; Nakamoto M; Sekiguchi A; Chrostowska A; Dargelos A
    Chemistry; 2009 Aug; 15(34):8480-8484. PubMed ID: 19609996
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Si/Ge double-layered nanotube array as a lithium ion battery anode.
    Song T; Cheng H; Choi H; Lee JH; Han H; Lee DH; Yoo DS; Kwon MS; Choi JM; Doo SG; Chang H; Xiao J; Huang Y; Park WI; Chung YC; Kim H; Rogers JA; Paik U
    ACS Nano; 2012 Jan; 6(1):303-9. PubMed ID: 22142021
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites.
    Chen Z; Augustyn V; Jia X; Xiao Q; Dunn B; Lu Y
    ACS Nano; 2012 May; 6(5):4319-27. PubMed ID: 22471878
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of LiVPO4F to Li4Ti5O12 as anode materials for lithium-ion batteries.
    Ma R; Shao L; Wu K; Shui M; Wang D; Pan J; Long N; Ren Y; Shu J
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8615-27. PubMed ID: 23927499
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fundamentally Addressing Bromine Storage through Reversible Solid-State Confinement in Porous Carbon Electrodes: Design of a High-Performance Dual-Redox Electrochemical Capacitor.
    Yoo SJ; Evanko B; Wang X; Romelczyk M; Taylor A; Ji X; Boettcher SW; Stucky GD
    J Am Chem Soc; 2017 Jul; 139(29):9985-9993. PubMed ID: 28696675
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Zeolite-Templated Carbon as the Cathode for a High Energy Density Dual-Ion Battery.
    Dubey RJ; Nüssli J; Piveteau L; Kravchyk KV; Rossell MD; Campanini M; Erni R; Kovalenko MV; Stadie NP
    ACS Appl Mater Interfaces; 2019 May; 11(19):17686-17696. PubMed ID: 31002234
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Emerging trends in anion storage materials for the capacitive and hybrid energy storage and beyond.
    Dou Q; Wu N; Yuan H; Shin KH; Tang Y; Mitlin D; Park HS
    Chem Soc Rev; 2021 Jun; 50(12):6734-6789. PubMed ID: 33955977
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fast and stable redox reactions of MnO₂/CNT hybrid electrodes for dynamically stretchable pseudocapacitors.
    Gu T; Wei B
    Nanoscale; 2015 Jul; 7(27):11626-32. PubMed ID: 26090617
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrode Materials, Electrolytes, and Challenges in Nonaqueous Lithium-Ion Capacitors.
    Li B; Zheng J; Zhang H; Jin L; Yang D; Lv H; Shen C; Shellikeri A; Zheng Y; Gong R; Zheng JP; Zhang C
    Adv Mater; 2018 Apr; 30(17):e1705670. PubMed ID: 29527751
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes.
    Wang W; Kumta PN
    ACS Nano; 2010 Apr; 4(4):2233-41. PubMed ID: 20364846
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MoO2-ordered mesoporous carbon hybrids as anode materials with highly improved rate capability and reversible capacity for lithium-ion battery.
    Chen A; Li C; Tang R; Yin L; Qi Y
    Phys Chem Chem Phys; 2013 Aug; 15(32):13601-10. PubMed ID: 23832242
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Facile synthesis of hierarchical micro/nanostructured MnO material and its excellent lithium storage property and high performance as anode in a MnO/LiNi0.5Mn1.5O(4-δ) lithium ion battery.
    Xu GL; Xu YF; Fang JC; Fu F; Sun H; Huang L; Yang S; Sun SG
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):6316-23. PubMed ID: 23758592
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and electrochemical properties of nanostructured LiCoO2 fibers as cathode materials for lithium-ion batteries.
    Gu Y; Chen D; Jiao X
    J Phys Chem B; 2005 Sep; 109(38):17901-6. PubMed ID: 16853296
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reversibility of anodic lithium in rechargeable lithium-oxygen batteries.
    Shui JL; Okasinski JS; Kenesei P; Dobbs HA; Zhao D; Almer JD; Liu DJ
    Nat Commun; 2013; 4():2255. PubMed ID: 23929396
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.