These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 24352853)

  • 61. One-pot synthesis of hematite@graphene core@shell nanostructures for superior lithium storage.
    Chen D; Quan H; Liang J; Guo L
    Nanoscale; 2013 Oct; 5(20):9684-9. PubMed ID: 23999932
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Materials for rechargeable lithium-ion batteries.
    Hayner CM; Zhao X; Kung HH
    Annu Rev Chem Biomol Eng; 2012; 3():445-71. PubMed ID: 22524506
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Enhanced reversible lithium storage in germanium nano-island coated 3D hexagonal bottle-like Si nanorod arrays.
    Yue C; Yu Y; Wu Z; He X; Wang J; Li J; Li C; Wu S; Li J; Kang J
    Nanoscale; 2014; 6(3):1817-22. PubMed ID: 24356767
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Synthesis and characterization of fluorinated carbon nanotubes for lithium primary batteries with high power density.
    Yue H; Zhang W; Liu H; Liu Z; Zhong G; Yang Y
    Nanotechnology; 2013 Oct; 24(42):424003. PubMed ID: 24067383
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Understanding performance limitation and suppression of leakage current or self-discharge in electrochemical capacitors: a review.
    Ike IS; Sigalas I; Iyuke S
    Phys Chem Chem Phys; 2016 Jan; 18(2):661-80. PubMed ID: 26659405
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A Bio-Inspired, Heavy-Metal-Free, Dual-Electrolyte Liquid Battery towards Sustainable Energy Storage.
    Ding Y; Yu G
    Angew Chem Int Ed Engl; 2016 Apr; 55(15):4772-6. PubMed ID: 26958787
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The emerging chemistry of sodium ion batteries for electrochemical energy storage.
    Kundu D; Talaie E; Duffort V; Nazar LF
    Angew Chem Int Ed Engl; 2015 Mar; 54(11):3431-48. PubMed ID: 25653194
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Designing Three-Dimensional Architectures for High-Performance Electron Accepting Pseudocapacitors.
    Peurifoy SR; Russell JC; Sisto TJ; Yang Y; Roy X; Nuckolls C
    J Am Chem Soc; 2018 Sep; 140(35):10960-10964. PubMed ID: 30141920
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Low-dimensional carbon and MXene-based electrochemical capacitor electrodes.
    Yoon Y; Lee K; Lee H
    Nanotechnology; 2016 Apr; 27(17):172001. PubMed ID: 26988574
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Multinuclear in situ magnetic resonance imaging of electrochemical double-layer capacitors.
    Ilott AJ; Trease NM; Grey CP; Jerschow A
    Nat Commun; 2014 Aug; 5():4536. PubMed ID: 25082481
    [TBL] [Abstract][Full Text] [Related]  

  • 71. High-Power-Density Organic Radical Batteries.
    Friebe C; Schubert US
    Top Curr Chem (Cham); 2017 Feb; 375(1):19. PubMed ID: 28150187
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Facile electrosynthesis of nano flower like metal-organic framework and its nanocomposite with conjugated polymer as a novel and hybrid electrode material for highly capacitive pseudocapacitors.
    Naseri M; Fotouhi L; Ehsani A; Dehghanpour S
    J Colloid Interface Sci; 2016 Dec; 484():314-319. PubMed ID: 27656861
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Abnormal excess capacity of conjugated dicarboxylates in lithium-ion batteries.
    Lee HH; Park Y; Shin KH; Lee KT; Hong SY
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19118-26. PubMed ID: 25285535
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Exfoliated Mesoporous 2D Covalent Organic Frameworks for High-Rate Electrochemical Double-Layer Capacitors.
    Yusran Y; Li H; Guan X; Li D; Tang L; Xue M; Zhuang Z; Yan Y; Valtchev V; Qiu S; Fang Q
    Adv Mater; 2020 Feb; 32(8):e1907289. PubMed ID: 31944440
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Graphenal polymers for energy storage.
    Li X; Song Q; Hao L; Zhi L
    Small; 2014 Jun; 10(11):2122-35. PubMed ID: 24574035
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Special Issue: Materials for Electrochemical Capacitors and Batteries.
    Wang JG; Wei B
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772797
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Comprehensive structural, surface-chemical and electrochemical characterization of nickel-based metallic foams.
    van Drunen J; Kinkead B; Wang MC; Sourty E; Gates BD; Jerkiewicz G
    ACS Appl Mater Interfaces; 2013 Jul; 5(14):6712-22. PubMed ID: 23755737
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Lithium-Sulfur Capacitors.
    Kim MH; Kim HK; Xi K; Kumar RV; Jung DS; Kim KB; Roh KC
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6199-6206. PubMed ID: 29272102
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Elemental Selenium for Electrochemical Energy Storage.
    Yang CP; Yin YX; Guo YG
    J Phys Chem Lett; 2015 Jan; 6(2):256-66. PubMed ID: 26263460
    [TBL] [Abstract][Full Text] [Related]  

  • 80. In Situ Tracking of Partial Sodium Desolvation of Materials with Capacitive, Pseudocapacitive, and Battery-like Charge/Discharge Behavior in Aqueous Electrolytes.
    Srimuk P; Lee J; Budak Ö; Choi J; Chen M; Feng G; Prehal C; Presser V
    Langmuir; 2018 Nov; 34(44):13132-13143. PubMed ID: 30350685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.