These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 2435301)

  • 1. Contingency learning and causal detection in Hermissenda: II. Cellular mechanisms.
    Farley J
    Behav Neurosci; 1987 Feb; 101(1):28-56. PubMed ID: 2435301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contingency learning and causal detection in Hermissenda: I. Behavior.
    Farley J
    Behav Neurosci; 1987 Feb; 101(1):13-27. PubMed ID: 3828050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro associative conditioning of Hermissenda: cumulative depolarization of type B photoreceptors and short-term associative behavioral changes.
    Farley J; Alkon DL
    J Neurophysiol; 1987 Jun; 57(6):1639-68. PubMed ID: 3598626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trial-spacing effects in Hermissenda suggest contributions of associative and nonassociative cellular mechanisms.
    Rogers RF; Talk AC; Matzel LD
    Behav Neurosci; 1994 Dec; 108(6):1030-42. PubMed ID: 7893395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incremental redistribution of protein kinase C underlies the acquisition curve during in vitro associative conditioning in Hermissenda.
    Muzzio IA; Talk AC; Matzel LD
    Behav Neurosci; 1997 Aug; 111(4):739-53. PubMed ID: 9267651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Associative learning changes intrinsic to Hermissenda type A photoreceptors.
    Farley J; Richards WG; Grover LM
    Behav Neurosci; 1990 Feb; 104(1):135-52. PubMed ID: 2156519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ryanodine receptor modulation of in vitro associative learning in Hermissenda crassicornis.
    Blackwell KT; Alkon DL
    Brain Res; 1999 Mar; 822(1-2):114-25. PubMed ID: 10082889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Serotonin modulation of Hermissenda type B photoreceptor light responses and ionic currents: implications for mechanisms underlying associative learning.
    Farley J; Wu R
    Brain Res Bull; 1989 Feb; 22(2):335-51. PubMed ID: 2468402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal order sensitivity of associative neural and behavioral changes in Hermissenda.
    Grover LM; Farley J
    Behav Neurosci; 1987 Oct; 101(5):658-75. PubMed ID: 3675844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein phosphorylation and associative learning in Hermissenda.
    Neary JT; Alkon DL
    Acta Biochim Biophys Hung; 1986; 21(3):159-76. PubMed ID: 2432746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potentiation of phototactic suppression in Hermissenda by compound conditioning results in potentiated excitability changes in type B and A photoreceptors.
    Farley J; Jin I
    Behav Neurosci; 1997 Apr; 111(2):309-19. PubMed ID: 9106672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurophysiological substrates of context conditioning in Hermissenda suggest a temporally invariant form of activity-dependent neuronal facilitation.
    Talk AC; Muzzio IA; Matzel LD
    Neurobiol Learn Mem; 1999 Sep; 72(2):95-117. PubMed ID: 10438650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane changes in a single photoreceptor cause associative learning in Hermissenda.
    Farley J; Richards WG; Ling LJ; Liman E; Alkon DL
    Science; 1983 Sep; 221(4616):1201-3. PubMed ID: 6612335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extinction of associative learning in Hermissenda: behavior and neural correlates.
    Richards WG; Farley J; Alkon DL
    Behav Brain Res; 1984 Dec; 14(3):161-70. PubMed ID: 6525240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subcellular, cellular, and circuit mechanisms underlying classical conditioning in Hermissenda crassicornis.
    Blackwell KT
    Anat Rec B New Anat; 2006 Jan; 289(1):25-37. PubMed ID: 16437555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postsynaptic calcium, but not cumulative depolarization, is necessary for the induction of associative plasticity in Hermissenda.
    Matzel LD; Rogers RF
    J Neurosci; 1993 Dec; 13(12):5029-40. PubMed ID: 8254359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Associative neural and behavioral change in Hermissenda: consequences of nervous system orientation for light and pairing specificity.
    Farley J; Alkon DL
    J Neurophysiol; 1982 Sep; 48(3):785-807. PubMed ID: 6290619
    [No Abstract]   [Full Text] [Related]  

  • 18. Voltage-dependent calcium and potassium ion conductances: a contingency mechanism for an associative learning model.
    Alkon DL
    Science; 1979 Aug; 205(4408):810-6. PubMed ID: 223244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implicating causal relations between cellular function and learning behavior.
    Lederhendler I; Alkon DL
    Behav Neurosci; 1986 Dec; 100(6):833-8. PubMed ID: 3545259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Paired turbulence and light do not produce a supralinear calcium increase in Hermissenda.
    Blackwell KT
    J Comput Neurosci; 2004; 17(1):81-99. PubMed ID: 15218355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.