These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Incremental redistribution of protein kinase C underlies the acquisition curve during in vitro associative conditioning in Hermissenda. Muzzio IA; Talk AC; Matzel LD Behav Neurosci; 1997 Aug; 111(4):739-53. PubMed ID: 9267651 [TBL] [Abstract][Full Text] [Related]
6. Associative learning changes intrinsic to Hermissenda type A photoreceptors. Farley J; Richards WG; Grover LM Behav Neurosci; 1990 Feb; 104(1):135-52. PubMed ID: 2156519 [TBL] [Abstract][Full Text] [Related]
7. Ryanodine receptor modulation of in vitro associative learning in Hermissenda crassicornis. Blackwell KT; Alkon DL Brain Res; 1999 Mar; 822(1-2):114-25. PubMed ID: 10082889 [TBL] [Abstract][Full Text] [Related]
8. Serotonin modulation of Hermissenda type B photoreceptor light responses and ionic currents: implications for mechanisms underlying associative learning. Farley J; Wu R Brain Res Bull; 1989 Feb; 22(2):335-51. PubMed ID: 2468402 [TBL] [Abstract][Full Text] [Related]
9. Temporal order sensitivity of associative neural and behavioral changes in Hermissenda. Grover LM; Farley J Behav Neurosci; 1987 Oct; 101(5):658-75. PubMed ID: 3675844 [TBL] [Abstract][Full Text] [Related]
10. Protein phosphorylation and associative learning in Hermissenda. Neary JT; Alkon DL Acta Biochim Biophys Hung; 1986; 21(3):159-76. PubMed ID: 2432746 [TBL] [Abstract][Full Text] [Related]
11. Potentiation of phototactic suppression in Hermissenda by compound conditioning results in potentiated excitability changes in type B and A photoreceptors. Farley J; Jin I Behav Neurosci; 1997 Apr; 111(2):309-19. PubMed ID: 9106672 [TBL] [Abstract][Full Text] [Related]
12. Neurophysiological substrates of context conditioning in Hermissenda suggest a temporally invariant form of activity-dependent neuronal facilitation. Talk AC; Muzzio IA; Matzel LD Neurobiol Learn Mem; 1999 Sep; 72(2):95-117. PubMed ID: 10438650 [TBL] [Abstract][Full Text] [Related]
13. Membrane changes in a single photoreceptor cause associative learning in Hermissenda. Farley J; Richards WG; Ling LJ; Liman E; Alkon DL Science; 1983 Sep; 221(4616):1201-3. PubMed ID: 6612335 [TBL] [Abstract][Full Text] [Related]
14. Extinction of associative learning in Hermissenda: behavior and neural correlates. Richards WG; Farley J; Alkon DL Behav Brain Res; 1984 Dec; 14(3):161-70. PubMed ID: 6525240 [TBL] [Abstract][Full Text] [Related]
15. Subcellular, cellular, and circuit mechanisms underlying classical conditioning in Hermissenda crassicornis. Blackwell KT Anat Rec B New Anat; 2006 Jan; 289(1):25-37. PubMed ID: 16437555 [TBL] [Abstract][Full Text] [Related]
16. Postsynaptic calcium, but not cumulative depolarization, is necessary for the induction of associative plasticity in Hermissenda. Matzel LD; Rogers RF J Neurosci; 1993 Dec; 13(12):5029-40. PubMed ID: 8254359 [TBL] [Abstract][Full Text] [Related]
17. Associative neural and behavioral change in Hermissenda: consequences of nervous system orientation for light and pairing specificity. Farley J; Alkon DL J Neurophysiol; 1982 Sep; 48(3):785-807. PubMed ID: 6290619 [No Abstract] [Full Text] [Related]
18. Voltage-dependent calcium and potassium ion conductances: a contingency mechanism for an associative learning model. Alkon DL Science; 1979 Aug; 205(4408):810-6. PubMed ID: 223244 [TBL] [Abstract][Full Text] [Related]
19. Implicating causal relations between cellular function and learning behavior. Lederhendler I; Alkon DL Behav Neurosci; 1986 Dec; 100(6):833-8. PubMed ID: 3545259 [TBL] [Abstract][Full Text] [Related]
20. Paired turbulence and light do not produce a supralinear calcium increase in Hermissenda. Blackwell KT J Comput Neurosci; 2004; 17(1):81-99. PubMed ID: 15218355 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]