BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 24353069)

  • 1. An important side reaction using the thiol, 3,6-dioxa-1,8-octanedithiol (DODT), in 9-fluorenylmethoxycarbonyl-based solid phase peptide synthesis.
    Harris PW; Kowalczyk R; Yang SH; Williams GM; Brimble MA
    J Pept Sci; 2014 Mar; 20(3):186-90. PubMed ID: 24353069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of DODT as a non-malodorous scavenger in Fmoc-based peptide synthesis.
    Teixeira A; Benckhuijsen WE; de Koning PE; Valentijn AR; Drijfhout JW
    Protein Pept Lett; 2002 Oct; 9(5):379-85. PubMed ID: 12370025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Green polymer chemistry: investigating the mechanism of radical ring-opening redox polymerization (R3P) of 3,6-dioxa-1,8-octanedithiol (DODT).
    Rosenthal-Kim EQ; Puskas JE
    Molecules; 2015 Apr; 20(4):6504-19. PubMed ID: 25871370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability and cleavage conditions of (2-furyl)-L-alanine-containing peptides.
    Schulz A; Busmann A; Klüver E; Schnebel M; Adermann K
    Protein Pept Lett; 2004 Dec; 11(6):601-6. PubMed ID: 15579131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of 3,6-dioxa-1,8-octanedithiol by platinum(IV) anticancer prodrug and model complex: kinetic and mechanistic studies.
    Huo S; Shen S; Liu D; Shi T
    J Phys Chem B; 2012 Jun; 116(22):6522-8. PubMed ID: 22574871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of C-terminal peptide thioesters using Fmoc-based solid-phase peptide chemistry.
    Shelton PT; Jensen KJ
    Methods Mol Biol; 2013; 1047():119-29. PubMed ID: 23943482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated Fmoc-based solid-phase synthesis of peptide thioesters with self-purification effect and application in the construction of immobilized SH3 domains.
    Mende F; Beisswenger M; Seitz O
    J Am Chem Soc; 2010 Aug; 132(32):11110-8. PubMed ID: 20662535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The phenacyl group as an efficient thiol protecting group in a peptide condensation reaction by the thioester method.
    Katayama H; Hojo H
    Org Biomol Chem; 2013 Jul; 11(26):4405-13. PubMed ID: 23715434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Side reactions in the SPPS of Cys-containing peptides.
    Stathopoulos P; Papas S; Pappas C; Mousis V; Sayyad N; Theodorou V; Tzakos AG; Tsikaris V
    Amino Acids; 2013 May; 44(5):1357-63. PubMed ID: 23459989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A rapid and efficient method for the synthesis of selectively S-Trt or S-Mmt protected Cys-containing peptides.
    Stathopoulos P; Papas S; Sakka M; Tzakos AG; Tsikaris V
    Amino Acids; 2014 May; 46(5):1367-76. PubMed ID: 24609270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Tripeptide Approach to the Solid-Phase Synthesis of Peptide Thioacids and N-Glycopeptides.
    Schöwe MJ; Keiper O; Unverzagt C; Wittmann V
    Chemistry; 2019 Dec; 25(69):15759-15764. PubMed ID: 31628819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Safe and efficient Boc-SPPS for the synthesis of glycopeptide-α-thioesters.
    Izumi M; Murakami M; Okamoto R; Kajihara Y
    J Pept Sci; 2014 Feb; 20(2):98-101. PubMed ID: 25975420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Cysteine S-Alkylation Reaction as a Synthetic Method to Covalently Modify Peptide Sequences.
    Calce E; De Luca S
    Chemistry; 2017 Jan; 23(2):224-233. PubMed ID: 27538566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution-phase synthesis and evaluation of tetraproline chiral stationary phases.
    Dai Z; Ye G; Pittman CU; Li T
    Chirality; 2012 Apr; 24(4):329-38. PubMed ID: 22344921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave-assisted solid-phase peptide synthesis based on the Fmoc protecting group strategy (CEM).
    Vanier GS
    Methods Mol Biol; 2013; 1047():235-49. PubMed ID: 23943491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silyl linker-based approach to the solid-phase synthesis of Fmoc glycopeptide thioesters.
    Ishii A; Hojo H; Nakahara Y; Ito Y; Nakahara Y
    Biosci Biotechnol Biochem; 2002 Feb; 66(2):225-32. PubMed ID: 11999392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid-phase synthesis of phosphopeptides.
    Højlys-Larsen KB; Jensen KJ
    Methods Mol Biol; 2013; 1047():191-9. PubMed ID: 23943487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convergent Synthesis of Thioether Containing Peptides.
    Mourtas S; Katakalou C; Gatos D; Barlos K
    Molecules; 2020 Jan; 25(1):. PubMed ID: 31948062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Backbone amide linker strategy: protocols for the synthesis of C-terminal peptide aldehydes.
    Shelton PT; Jensen KJ
    Methods Mol Biol; 2013; 1047():131-9. PubMed ID: 23943483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liquid-phase peptide synthesis on polyethylene glycol (PEG) supports using strategies based on the 9-fluorenylmethoxycarbonyl amino protecting group: application of PEGylated peptides in biochemical assays.
    Fischer PM; Zheleva DI
    J Pept Sci; 2002 Sep; 8(9):529-42. PubMed ID: 12371706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.