These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 24353070)

  • 1. Flexible supercapacitor made of carbon nanotube yarn with internal pores.
    Choi C; Lee JA; Choi AY; Kim YT; Lepró X; Lima MD; Baughman RH; Kim SJ
    Adv Mater; 2014 Apr; 26(13):2059-65. PubMed ID: 24353070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric carbon nanotube-MnO₂ two-ply yarn supercapacitors for wearable electronics.
    Su F; Miao M
    Nanotechnology; 2014 Apr; 25(13):135401. PubMed ID: 24583526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-performance hybrid carbon nanotube fibers for wearable energy storage.
    Lu Z; Chao Y; Ge Y; Foroughi J; Zhao Y; Wang C; Long H; Wallace GG
    Nanoscale; 2017 Apr; 9(16):5063-5071. PubMed ID: 28265639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-performance two-ply yarn supercapacitors based on carbon nanotube yarns dotted with Co3 O4 and NiO nanoparticles.
    Su F; Lv X; Miao M
    Small; 2015 Feb; 11(7):854-61. PubMed ID: 25277293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrodeposition of α-MnO
    Jeong JH; Park JW; Lee DW; Baughman RH; Kim SJ
    Sci Rep; 2019 Aug; 9(1):11271. PubMed ID: 31375776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon Nanotube Fibers Decorated with MnO
    Zhang L; Zhang X; Wang J; Seveno D; Fransaer J; Locquet JP; Seo JW
    Molecules; 2021 Jun; 26(11):. PubMed ID: 34200479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core-spun carbon nanotube yarn supercapacitors for wearable electronic textiles.
    Zhang D; Miao M; Niu H; Wei Z
    ACS Nano; 2014 May; 8(5):4571-9. PubMed ID: 24754666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of Amorphous Manganese Oxide@Multiwalled Carbon Nanotube Fiber for Robust Solid-State Supercapacitor.
    Shi P; Li L; Hua L; Qian Q; Wang P; Zhou J; Sun G; Huang W
    ACS Nano; 2017 Jan; 11(1):444-452. PubMed ID: 28027441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible hybrid yarn-shaped supercapacitors based on porous nickel cobalt sulfide nanosheet array layers on gold metalized cotton yarns.
    Wang HT; Liu YN; Kang XH; Wang YF; Yang SY; Bian SW; Zhu Q
    J Colloid Interface Sci; 2018 Dec; 532():527-535. PubMed ID: 30103135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ag/MnO
    Kim JH; Choi C; Lee JM; de Andrade MJ; Baughman RH; Kim SJ
    Sci Rep; 2018 Sep; 8(1):13309. PubMed ID: 30190602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of system capacitance via weavable superelastic biscrolled yarn supercapacitors.
    Choi C; Kim KM; Kim KJ; Lepró X; Spinks GM; Baughman RH; Kim SJ
    Nat Commun; 2016 Dec; 7():13811. PubMed ID: 27976668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-performance all-carbon yarn micro-supercapacitor for an integrated energy system.
    Meng Q; Wu H; Meng Y; Xie K; Wei Z; Guo Z
    Adv Mater; 2014 Jun; 26(24):4100-6. PubMed ID: 24692229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stretchable, weavable coiled carbon nanotube/MnO2/polymer fiber solid-state supercapacitors.
    Choi C; Kim SH; Sim HJ; Lee JA; Choi AY; Kim YT; Lepró X; Spinks GM; Baughman RH; Kim SJ
    Sci Rep; 2015 Mar; 5():9387. PubMed ID: 25797351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-performance and flexible all-solid-state hybrid supercapacitor constructed by NiCoP/CNT and N-doped carbon coated CNT nanoarrays.
    Zhao G; Tang Y; Wan G; Xu X; Zhou X; Zhou M; Hao C; Deng S; Wang G
    J Colloid Interface Sci; 2020 Jul; 572():151-159. PubMed ID: 32240788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high performance asymmetric supercapacitor based on in situ prepared CuCo
    Liang X; Wang Q; Ma Y; Zhang D
    Dalton Trans; 2018 Dec; 47(47):17146-17152. PubMed ID: 30467563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics.
    Kou L; Huang T; Zheng B; Han Y; Zhao X; Gopalsamy K; Sun H; Gao C
    Nat Commun; 2014 May; 5():3754. PubMed ID: 24786366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High Performance Carbon Nanotube Yarn Supercapacitors with a Surface-Oxidized Copper Current Collector.
    Zhang D; Wu Y; Li T; Huang Y; Zhang A; Miao M
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25835-42. PubMed ID: 26523943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Performance Supercapacitors from Niobium Nanowire Yarns.
    Mirvakili SM; Mirvakili MN; Englezos P; Madden JD; Hunter IW
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13882-8. PubMed ID: 26068246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Core-double-shell, carbon nanotube@polypyrrole@MnO₂ sponge as freestanding, compressible supercapacitor electrode.
    Li P; Yang Y; Shi E; Shen Q; Shang Y; Wu S; Wei J; Wang K; Zhu H; Yuan Q; Cao A; Wu D
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):5228-34. PubMed ID: 24621200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Stretchable Sheath-Core Yarns for Multifunctional Wearable Electronics.
    Cai G; Hao B; Luo L; Deng Z; Zhang R; Ran J; Tang X; Cheng D; Bi S; Wang X; Dai K
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29717-29727. PubMed ID: 32517469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.