BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 24353251)

  • 1. A comparison of material characterizations in frequently used constitutive models of ligaments.
    Wan C; Hao Z; Wen S
    Int J Numer Method Biomed Eng; 2014 Jun; 30(6):605-15. PubMed ID: 24353251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of the variation in ACL constitutive model on joint kinematics and biomechanics under different loads: a finite element study.
    Wan C; Hao Z; Wen S
    J Biomech Eng; 2013 Apr; 135(4):041002. PubMed ID: 24231897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Material characterization of human medial collateral ligament.
    Quapp KM; Weiss JA
    J Biomech Eng; 1998 Dec; 120(6):757-63. PubMed ID: 10412460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading.
    Gardiner JC; Weiss JA
    J Orthop Res; 2003 Nov; 21(6):1098-106. PubMed ID: 14554224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A visco-hyperelastic constitutive model for human spine ligaments.
    Jiang Y; Wang Y; Peng X
    Cell Biochem Biophys; 2015 Mar; 71(2):1147-56. PubMed ID: 25347987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping of contributions from collateral ligaments to overall knee joint constraint: an experimental cadaveric study.
    Cyr AJ; Shalhoub SS; Fitzwater FG; Ferris LA; Maletsky LP
    J Biomech Eng; 2015 Jun; 137(6):061006. PubMed ID: 25751664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noninvasive determination of ligament strain with deformable image registration.
    Phatak NS; Sun Q; Kim SE; Parker DL; Sanders RK; Veress AI; Ellis BJ; Weiss JA
    Ann Biomed Eng; 2007 Jul; 35(7):1175-87. PubMed ID: 17394084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A constitutive law for the failure behavior of medial collateral ligaments.
    De Vita R; Slaughter WS
    Biomech Model Mechanobiol; 2007 Apr; 6(3):189-97. PubMed ID: 16933127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperelastic behavior of porcine aorta segment under extension-inflation tests fitted with various phenomenological models.
    Veljković DŽ; Ranković VJ; Pantović SB; Rosić MA; Kojić MR
    Acta Bioeng Biomech; 2014; 16(3):37-45. PubMed ID: 25308095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributions of elastic fibers, collagen, and extracellular matrix to the multiaxial mechanics of ligament.
    Henninger HB; Ellis BJ; Scott SA; Weiss JA
    J Mech Behav Biomed Mater; 2019 Nov; 99():118-126. PubMed ID: 31351401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A biomechanical assessment to evaluate breed differences in normal porcine medial collateral ligaments.
    Germscheid NM; Thornton GM; Hart DA; Hildebrand KA
    J Biomech; 2011 Feb; 44(4):725-31. PubMed ID: 21092965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural properties of the medial collateral ligament complex of the human knee.
    Robinson JR; Bull AM; Amis AA
    J Biomech; 2005 May; 38(5):1067-74. PubMed ID: 15797588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new three-dimensional exponential material model of the coronary arterial wall to include shear stress due to torsion.
    Van Epps JS; Vorp DA
    J Biomech Eng; 2008 Oct; 130(5):051001. PubMed ID: 19045508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament.
    Natali AN; Carniel EL; Pavan PG; Sander FG; Dorow C; Geiger M
    J Biomech Eng; 2008 Jun; 130(3):031004. PubMed ID: 18532853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Medial collateral ligament insertion site and contact forces in the ACL-deficient knee.
    Ellis BJ; Lujan TJ; Dalton MS; Weiss JA
    J Orthop Res; 2006 Apr; 24(4):800-10. PubMed ID: 16514656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A transversely isotropic hyperelastic constitutive model of the PDL. Analytical and computational aspects.
    Limbert G; Middleton J; Laizans J; Dobelis M; Knets I
    Comput Methods Biomech Biomed Engin; 2003; 6(5-6):337-45. PubMed ID: 14675954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of dermatan sulfate glycosaminoglycans on the quasi-static material properties of the human medial collateral ligament.
    Lujan TJ; Underwood CJ; Henninger HB; Thompson BM; Weiss JA
    J Orthop Res; 2007 Jul; 25(7):894-903. PubMed ID: 17343278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A failure model for ligaments.
    Liao H; Belkoff SM
    J Biomech; 1999 Feb; 32(2):183-8. PubMed ID: 10052924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of cyclic stretching on the tensile properties of patellar tendon and medial collateral ligament in rat.
    Su WR; Chen HH; Luo ZP
    Clin Biomech (Bristol, Avon); 2008 Aug; 23(7):911-7. PubMed ID: 18485553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the fatigue behavior of the medial collateral ligament utilizing traditional and novel mechanical variables for the assessment of damage accumulation.
    Zec ML; Thistlethwaite P; Frank CB; Shrive NG
    J Biomech Eng; 2010 Jan; 132(1):011001. PubMed ID: 20524739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.