These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 2435363)

  • 1. Recovery of synaptic transmission predicted from extracellular K+ undershoots following brief anoxia in hippocampal slices.
    Roberts EL; Sick TJ
    Brain Res; 1987 Jan; 402(1):178-81. PubMed ID: 2435363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium-sensitive recovery of extracellular potassium and synaptic transmission in rat hippocampal slices exposed to brief anoxia.
    Roberts EL; Sick TJ
    Brain Res; 1988 Jul; 456(1):113-9. PubMed ID: 3409029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-related modifications of potassium homeostasis and synaptic transmission during and after anoxia in rat hippocampal slices.
    Roberts EL; Rosenthal M; Sick TJ
    Brain Res; 1990 Apr; 514(1):111-8. PubMed ID: 2162706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose enhances recovery of potassium ion homeostasis and synaptic excitability after anoxia in hippocampal slices.
    Roberts EL; Sick TJ
    Brain Res; 1992 Jan; 570(1-2):225-30. PubMed ID: 1319793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperexcitability following moderate hypoxia in hippocampal tissue slices.
    Schiff SJ; Somjen GG
    Brain Res; 1985 Jul; 337(2):337-40. PubMed ID: 2992681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-related changes in K+ transport and synaptic transmission during and after anoxia in rat hippocampal slices.
    Roberts EL; Rosenthal M; Sick TJ
    Acta Physiol Scand Suppl; 1989; 582():57. PubMed ID: 2554681
    [No Abstract]   [Full Text] [Related]  

  • 7. Differential role of KIR channel and Na(+)/K(+)-pump in the regulation of extracellular K(+) in rat hippocampus.
    D'Ambrosio R; Gordon DS; Winn HR
    J Neurophysiol; 2002 Jan; 87(1):87-102. PubMed ID: 11784732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycolysis and recovery of potassium ion homeostasis and synaptic transmission in hippocampal slices after anoxia or stimulated potassium release.
    Roberts EL
    Brain Res; 1993 Aug; 620(2):251-8. PubMed ID: 8396493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity-dependent extracellular K+ accumulation in rat optic nerve: the role of glial and axonal Na+ pumps.
    Ransom CB; Ransom BR; Sontheimer H
    J Physiol; 2000 Feb; 522 Pt 3(Pt 3):427-42. PubMed ID: 10713967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular potassium ion activity and electrophysiology in the hippocampal slice: paradoxical recovery of synaptic transmission during anoxia.
    Sick TJ; Solow EL; Roberts EL
    Brain Res; 1987 Aug; 418(2):227-34. PubMed ID: 2823961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature dependence of extracellular ionic changes evoked by anoxia in hippocampal slices.
    Morris ME; Leblond J; Agopyan N; Krnjević K
    J Neurophysiol; 1991 Feb; 65(2):157-67. PubMed ID: 2016634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium influx from the extracellular space promotes NADH hyperoxidation and electrical dysfunction after anoxia in hippocampal slices.
    Pérez-Pinzón MA; Mumford PL; Carranza V; Sick TJ
    J Cereb Blood Flow Metab; 1998 Feb; 18(2):215-21. PubMed ID: 9469165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anoxia-induced changes in extracellular K+ and pH in mammalian central white matter.
    Ransom BR; Walz W; Davis PK; Carlini WG
    J Cereb Blood Flow Metab; 1992 Jul; 12(4):593-602. PubMed ID: 1618938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of graded hypoxia on the hippocampal slice: an in vitro model of the ischemic penumbra.
    Schiff SJ; Somjen GG
    Stroke; 1987; 18(1):30-7. PubMed ID: 3027927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rat hippocampal slices need bicarbonate for the recovery of synaptic transmission after anoxia.
    Roberts EL; He J; Chih CP
    Brain Res; 2000 Sep; 875(1-2):171-4. PubMed ID: 10967313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of a slow hyperpolarizing synaptic potential in rat hippocampal pyramidal cells in vitro.
    Alger BE
    J Neurophysiol; 1984 Nov; 52(5):892-910. PubMed ID: 6096520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycolysis prevents anoxia-induced synaptic transmission damage in rat hippocampal slices.
    Tian GF; Baker AJ
    J Neurophysiol; 2000 Apr; 83(4):1830-9. PubMed ID: 10758095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Na-K pump potassium regulation and IPSPs in seizures and spreading depression in immature rabbit hippocampal slices.
    Haglund MM; Schwartzkroin PA
    J Neurophysiol; 1990 Feb; 63(2):225-39. PubMed ID: 2313342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion and membrane changes in the brain during anoxia.
    Hansen AJ
    Behav Brain Res; 1984 Nov; 14(2):93-8. PubMed ID: 6151843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prolonged exposure to high potassium concentration results in irreversible loss of synaptic transmission in hippocampal tissue slices.
    Kawasaki K; Czéh G; Somjen GG
    Brain Res; 1988 Aug; 457(2):322-9. PubMed ID: 2851366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.