These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 24353898)

  • 1. Immune evasion in acute myeloid leukemia: current concepts and future directions.
    Teague RM; Kline J
    J Immunother Cancer; 2013 Aug; 1(13):1. PubMed ID: 24353898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unveiling T cell evasion mechanisms to immune checkpoint inhibitors in acute myeloid leukemia.
    Gurska L; Gritsman K
    Cancer Drug Resist; 2023; 6(3):674-687. PubMed ID: 37842238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CD40 ligation reverses T cell tolerance in acute myeloid leukemia.
    Zhang L; Chen X; Liu X; Kline DE; Teague RM; Gajewski TF; Kline J
    J Clin Invest; 2013 May; 123(5):1999-2010. PubMed ID: 23619361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thymic commitment of regulatory T cells is a pathway of TCR-dependent selection that isolates repertoires undergoing positive or negative selection.
    Coutinho A; Caramalho I; Seixas E; Demengeot J
    Curr Top Microbiol Immunol; 2005; 293():43-71. PubMed ID: 15981475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immune evasion mechanisms in acute myeloid leukemia: A focus on immune checkpoint pathways.
    Taghiloo S; Asgarian-Omran H
    Crit Rev Oncol Hematol; 2021 Jan; 157():103164. PubMed ID: 33271388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunomodulatory Drugs: Immune Checkpoint Agents in Acute Leukemia.
    Knaus HA; Kanakry CG; Luznik L; Gojo I
    Curr Drug Targets; 2017; 18(3):315-331. PubMed ID: 25981611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The targeting of immunosuppressive mechanisms in hematological malignancies.
    Andersen MH
    Leukemia; 2014 Sep; 28(9):1784-92. PubMed ID: 24691076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of CD200 is a Stem Cell-Specific Mechanism of Immune Evasion in AML.
    Herbrich S; Baran N; Cai T; Weng C; Aitken MJL; Post SM; Henderson J; Shi C; Richard-Carpentier G; Sauvageau G; Baggerly K; Al-Atrash G; Davis RE; Daver N; Zha D; Konopleva M
    J Immunother Cancer; 2021 Jul; 9(7):. PubMed ID: 34326171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How the immune system achieves self-nonself discrimination during adaptive immunity.
    Jiang H; Chess L
    Adv Immunol; 2009; 102():95-133. PubMed ID: 19477320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immune-Based Therapeutic Interventions for Acute Myeloid Leukemia.
    Perna F; Espinoza-Gutarra MR; Bombaci G; Farag SS; Schwartz JE
    Cancer Treat Res; 2022; 183():225-254. PubMed ID: 35551662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selection of Tumor-Specific Cytotoxic T Lymphocytes in Acute Myeloid Leukemia Patients Through the Identification of T-Cells Capable to Establish Stable Interactions With the Leukemic Cells: "Doublet Technology".
    García-Guerrero E; Sánchez-Abarca LI; Domingo E; Ramos TL; Bejarano-García JA; Gonzalez-Campos JA; Caballero-Velázquez T; Pérez-Simón JA
    Front Immunol; 2018; 9():1971. PubMed ID: 30233577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of Immune Tolerance in Leukemia and Lymphoma.
    Curran EK; Godfrey J; Kline J
    Trends Immunol; 2017 Jul; 38(7):513-525. PubMed ID: 28511816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The potential role of the thymus in immunotherapies for acute myeloid leukemia.
    Hino C; Xu Y; Xiao J; Baylink DJ; Reeves ME; Cao H
    Front Immunol; 2023; 14():1102517. PubMed ID: 36814919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immuno-oncology: understanding the function and dysfunction of the immune system in cancer.
    Finn OJ
    Ann Oncol; 2012 Sep; 23 Suppl 8(Suppl 8):viii6-9. PubMed ID: 22918931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PD-1/PD-L1 interactions inhibit antitumor immune responses in a murine acute myeloid leukemia model.
    Zhang L; Gajewski TF; Kline J
    Blood; 2009 Aug; 114(8):1545-52. PubMed ID: 19417208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vaccine and Cell-based Therapeutic Approaches in Acute Myeloid Leukemia.
    Agrawal V; Gbolahan OB; Stahl M; Zeidan AM; Zaid MA; Farag SS; Konig H
    Curr Cancer Drug Targets; 2020; 20(7):473-489. PubMed ID: 32357813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PD-1H/VISTA mediates immune evasion in acute myeloid leukemia.
    Kim TK; Han X; Hu Q; Vandsemb EN; Fielder CM; Hong J; Kim KW; Mason EF; Plowman RS; Wang J; Wang Q; Zhang JP; Badri T; Sanmamed MF; Zheng L; Zhang T; Alawa J; Lee SW; Zeidan AM; Halene S; Pillai MM; Chandhok NS; Lu J; Xu ML; Gore SD; Chen L
    J Clin Invest; 2024 Feb; 134(3):. PubMed ID: 38060328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of the immunosuppressive microenvironment in acute myeloid leukemia development and treatment.
    Isidori A; Salvestrini V; Ciciarello M; Loscocco F; Visani G; Parisi S; Lecciso M; Ocadlikova D; Rossi L; Gabucci E; Clissa C; Curti A
    Expert Rev Hematol; 2014 Dec; 7(6):807-18. PubMed ID: 25227702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Therapeutic gene modified cell based cancer vaccines.
    Kozłowska A; Mackiewicz J; Mackiewicz A
    Gene; 2013 Aug; 525(2):200-7. PubMed ID: 23566846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CCR4 and CCR7 differentially regulate thymocyte localization with distinct outcomes for central tolerance.
    Li Y; Guaman Tipan P; Selden HJ; Srinivasan J; Hale LP; Ehrlich LIR
    Elife; 2023 Jun; 12():. PubMed ID: 37266571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.