BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 24354006)

  • 1. A microchip electrophoresis-mass spectrometric platform for fast separation and identification of enantiomers employing the partial filling technique.
    Li X; Xiao D; Ou XM; McCullm C; Liu YM
    J Chromatogr A; 2013 Nov; 1318():251-6. PubMed ID: 24354006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chiral capillary electrophoresis-mass spectrometry of 3,4-dihydroxyphenylalanine: evidence for its enantioselective metabolism in PC-12 nerve cells.
    Yuan B; Wu H; Sanders T; McCullum C; Zheng Y; Tchounwou PB; Liu YM
    Anal Biochem; 2011 Sep; 416(2):191-5. PubMed ID: 21683678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microchip electrophoresis-mass spectrometric platform with double cell lysis nano-electrodes for automated single cell analysis.
    Li X; Zhao S; Hu H; Liu YM
    J Chromatogr A; 2016 Jun; 1451():156-163. PubMed ID: 27207575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of a microchip electrophoresis-mass spectrometry platform deploying a pressure-driven make-up flow.
    Li X; Zhao S; Liu YM
    J Chromatogr A; 2013 Apr; 1285():159-64. PubMed ID: 23473508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. D-serine uptake and release in PC-12 cells measured by chiral microchip electrophoresis-mass spectrometry.
    Li X; McCullum C; Zhao S; Hu H; Liu YM
    ACS Chem Neurosci; 2015 Apr; 6(4):582-7. PubMed ID: 25611520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of D-Asp and D-Glu in rat brain and human cerebrospinal fluid by microchip electrophoresis.
    Huang Y; Shi M; Zhao S
    J Sep Sci; 2009 Sep; 32(17):3001-6. PubMed ID: 19642099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast quantification of amino acids by microchip electrophoresis-mass spectrometry.
    Li X; Xiao D; Sanders T; Tchounwou PB; Liu YM
    Anal Bioanal Chem; 2013 Oct; 405(25):8131-6. PubMed ID: 23929191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-speed microchip electrophoresis method for the separation of (R,S)-naproxen.
    Guihen E; Hogan AM; Glennon JD
    Chirality; 2009 Feb; 21(2):292-8. PubMed ID: 18537165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trace analysis of D-tyrosine in biological samples by microchip electrophoresis with laser induced fluorescence detection.
    Huang Y; Shi M; Zhao S; Liang H
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Nov; 879(29):3203-7. PubMed ID: 21342793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a microchip-pulsed electrochemical method for rapid determination of L-DOPA and tyrosine in Mucuna pruriens.
    Li X; Chen Z; Yang F; Pan J; Li Y
    J Sep Sci; 2013 May; 36(9-10):1590-6. PubMed ID: 23529844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elimination of suction effect in interfacing microchip electrophoresis with inductively coupled plasma mass spectrometry using porous monolithic plugs.
    Cheng H; Liu J; Yin X; Shen H; Xu Z
    Analyst; 2012 Jul; 137(13):3111-8. PubMed ID: 22606684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Research progress on analysis of human papillomavirus by microchip capillary electrophoresis].
    Lin X; Wang C; Lin JM
    Se Pu; 2020 Oct; 38(10):1179-1188. PubMed ID: 34213114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enantiomeric separation of dihydroxyphenylalanine (DOPA), methyldihydroxyphenylalanine (MDOPA) and hydrazinomethyldihydroxyphenylalanine (CDOPA) by using capillary electrophoresis with sulfobutyl ether-beta-cyclodextrin as a chiral selector.
    Dolezalová M; Fanali S
    Electrophoresis; 2000 Sep; 21(15):3264-9. PubMed ID: 11001225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation of enantiomers by capillary electrophoresis-mass spectrometry employing a partial filling technique with a chiral crown ether.
    Tanaka Y; Otsuka K; Terabe S
    J Chromatogr A; 2000 Apr; 875(1-2):323-30. PubMed ID: 10839152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving sensitivity in microchip electrophoresis coupled to ESI-MS/MS on the example of a cardiac drug mixture.
    Schwarzkopf F; Scholl T; Ohla S; Belder D
    Electrophoresis; 2014 Jul; 35(12-13):1880-6. PubMed ID: 24610686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chiral separation of intact amino acids by capillary electrophoresis-mass spectrometry employing a partial filling technique with a crown ether carboxylic acid.
    Lee S; Kim SJ; Bang E; Na YC
    J Chromatogr A; 2019 Feb; 1586():128-138. PubMed ID: 30558847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent progress in microchip electrophoresis-mass spectrometry.
    Kitagawa F; Otsuka K
    J Pharm Biomed Anal; 2011 Jun; 55(4):668-78. PubMed ID: 21130595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving sensitivity for microchip electrophoresis interfaced with inductively coupled plasma mass spectrometry using parallel multichannel separation.
    Cheng H; Liu J; Xu Z; Wang Y; Ye M
    J Chromatogr A; 2016 Aug; 1461():198-204. PubMed ID: 27488720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-chip chiral separation based on bovine serum albumin-conjugated carbon nanotubes as stationary phase in a microchannel.
    Weng X; Bi H; Liu B; Kong J
    Electrophoresis; 2006 Aug; 27(15):3129-35. PubMed ID: 16807934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Property of ionic liquid in electrophoresis and its application in chiral separation on microchips.
    Zeng HL; Shen H; Nakagama T; Uchiyama K
    Electrophoresis; 2007 Dec; 28(24):4590-6. PubMed ID: 18004712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.