These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 24354846)

  • 21. A proximal promoter element required for positive transcriptional control by guanosine tetraphosphate and DksA protein during the stringent response.
    Gummesson B; Lovmar M; Nyström T
    J Biol Chem; 2013 Jul; 288(29):21055-21064. PubMed ID: 23749992
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Stringent Response Regulator DksA Is Required for Salmonella enterica Serovar Typhimurium Growth in Minimal Medium, Motility, Biofilm Formation, and Intestinal Colonization.
    Azriel S; Goren A; Rahav G; Gal-Mor O
    Infect Immun; 2016 Jan; 84(1):375-84. PubMed ID: 26553464
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DksA and ppGpp Regulate the σ
    Girard ME; Gopalkrishnan S; Grace ED; Halliday JA; Gourse RL; Herman C
    J Bacteriol; 2018 Jan; 200(2):. PubMed ID: 29061665
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Redox-sensitive transcriptional control by a thiol/disulphide switch in the global regulator, Spx.
    Nakano S; Erwin KN; Ralle M; Zuber P
    Mol Microbiol; 2005 Jan; 55(2):498-510. PubMed ID: 15659166
    [TBL] [Abstract][Full Text] [Related]  

  • 25. TraR directly regulates transcription initiation by mimicking the combined effects of the global regulators DksA and ppGpp.
    Gopalkrishnan S; Ross W; Chen AY; Gourse RL
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):E5539-E5548. PubMed ID: 28652326
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of DksA, GreA, and GreB on transcription initiation: insights into the mechanisms of factors that bind in the secondary channel of RNA polymerase.
    Rutherford ST; Lemke JJ; Vrentas CE; Gaal T; Ross W; Gourse RL
    J Mol Biol; 2007 Mar; 366(4):1243-57. PubMed ID: 17207814
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxidation of zinc finger transcription factors: physiological consequences.
    Webster KA; Prentice H; Bishopric NH
    Antioxid Redox Signal; 2001 Aug; 3(4):535-48. PubMed ID: 11554443
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DksA represses ribosomal gene transcription in Pseudomonas aeruginosa by interacting with RNA polymerase on ribosomal promoters.
    Perron K; Comte R; van Delden C
    Mol Microbiol; 2005 May; 56(4):1087-102. PubMed ID: 15853892
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nitrosative stress and transcription.
    Kröncke KD
    Biol Chem; 2003; 384(10-11):1365-77. PubMed ID: 14669980
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrogen peroxide-sensitive cysteines in the Sty1 MAPK regulate the transcriptional response to oxidative stress.
    Day AM; Veal EA
    J Biol Chem; 2010 Mar; 285(10):7505-16. PubMed ID: 20061379
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cysteine sulfur chemistry in transcriptional regulators at the host-bacterial pathogen interface.
    Luebke JL; Giedroc DP
    Biochemistry; 2015 Jun; 54(21):3235-49. PubMed ID: 25946648
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Zinc finger proteins as molecular targets for nitric oxide-mediated gene regulation.
    Kröncke KD
    Antioxid Redox Signal; 2001 Aug; 3(4):565-75. PubMed ID: 11554445
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DksA2, a zinc-independent structural analog of the transcription factor DksA.
    Furman R; Biswas T; Danhart EM; Foster MP; Tsodikov OV; Artsimovitch I
    FEBS Lett; 2013 Mar; 587(6):614-9. PubMed ID: 23416301
    [TBL] [Abstract][Full Text] [Related]  

  • 34. pH dependence of the stress regulator DksA.
    Furman R; Danhart EM; NandyMazumdar M; Yuan C; Foster MP; Artsimovitch I
    PLoS One; 2015; 10(3):e0120746. PubMed ID: 25799498
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A direct way of redox sensing.
    Benoit R; Auer M
    RNA Biol; 2011; 8(1):18-23. PubMed ID: 21220941
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The guanosine tetraphosphate (ppGpp) alarmone, DksA and promoter affinity for RNA polymerase in regulation of sigma-dependent transcription.
    Bernardo LM; Johansson LU; Solera D; Skärfstad E; Shingler V
    Mol Microbiol; 2006 May; 60(3):749-64. PubMed ID: 16629675
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional characterization of the stringent response regulatory gene dksA of Vibrio cholerae and its role in modulation of virulence phenotypes.
    Pal RR; Bag S; Dasgupta S; Das B; Bhadra RK
    J Bacteriol; 2012 Oct; 194(20):5638-48. PubMed ID: 22904284
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparing nitrosative versus oxidative stress toward zinc finger-dependent transcription. Unique role for NO.
    Kröncke KD; Klotz LO; Suschek CV; Sies H
    J Biol Chem; 2002 Apr; 277(15):13294-301. PubMed ID: 11796720
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The dual role of DksA protein in the regulation of Escherichia coli pArgX promoter.
    Łyżeń R; Maitra A; Milewska K; Kochanowska-Łyżeń M; Hernandez VJ; Szalewska-Pałasz A
    Nucleic Acids Res; 2016 Dec; 44(21):10316-10325. PubMed ID: 27915292
    [TBL] [Abstract][Full Text] [Related]  

  • 40. S-nitrosation on zinc finger motif of PARP-1 as a mechanism of DNA repair inhibition by arsenite.
    Zhou X; Cooper KL; Huestis J; Xu H; Burchiel SW; Hudson LG; Liu KJ
    Oncotarget; 2016 Dec; 7(49):80482-80492. PubMed ID: 27741521
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.