These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 24354846)

  • 41. Staphylococcus aureus CymR is a new thiol-based oxidation-sensing regulator of stress resistance and oxidative response.
    Ji Q; Zhang L; Sun F; Deng X; Liang H; Bae T; He C
    J Biol Chem; 2012 Jun; 287(25):21102-9. PubMed ID: 22553203
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Alteration of zif268 zinc-finger motifs gives rise to non-native zinc-co-ordination sites but preserves wild-type DNA recognition.
    Green A; Sarkar B
    Biochem J; 1998 Jul; 333 ( Pt 1)(Pt 1):85-90. PubMed ID: 9639566
    [TBL] [Abstract][Full Text] [Related]  

  • 43. DksA is required for growth phase-dependent regulation, growth rate-dependent control, and stringent control of fis expression in Escherichia coli.
    Mallik P; Paul BJ; Rutherford ST; Gourse RL; Osuna R
    J Bacteriol; 2006 Aug; 188(16):5775-82. PubMed ID: 16885445
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transcriptional Responses to ppGpp and DksA.
    Gourse RL; Chen AY; Gopalkrishnan S; Sanchez-Vazquez P; Myers A; Ross W
    Annu Rev Microbiol; 2018 Sep; 72():163-184. PubMed ID: 30200857
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stringent response regulators (p)ppGpp and DksA positively regulate virulence and host adaptation of Xanthomonas citri.
    Zhang Y; Teper D; Xu J; Wang N
    Mol Plant Pathol; 2019 Nov; 20(11):1550-1565. PubMed ID: 31621195
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects on growth by changes of the balance between GreA, GreB, and DksA suggest mutual competition and functional redundancy in Escherichia coli.
    Vinella D; Potrykus K; Murphy H; Cashel M
    J Bacteriol; 2012 Jan; 194(2):261-73. PubMed ID: 22056927
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cysteine thiol-based post-translational modification: What do we know about transcription factors?
    Zhou H; Huang J; Willems P; Van Breusegem F; Xie Y
    Trends Plant Sci; 2023 Apr; 28(4):415-428. PubMed ID: 36494303
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inhibition of glutathione biosynthesis alters compartmental redox status and the thiol proteome in organogenesis-stage rat conceptuses.
    Harris C; Shuster DZ; Roman Gomez R; Sant KE; Reed MS; Pohl J; Hansen JM
    Free Radic Biol Med; 2013 Oct; 63():325-37. PubMed ID: 23736079
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantitative redox proteomics: the NOxICAT method.
    Lindemann C; Leichert LI
    Methods Mol Biol; 2012; 893():387-403. PubMed ID: 22665313
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Similarity and dissimilarity of thiols as anti-nitrosative agents in the nitric oxide-superoxide system.
    Hu TM; Ho SC
    Biochem Biophys Res Commun; 2011 Jan; 404(3):785-9. PubMed ID: 21168387
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Allosteric Effector ppGpp Potentiates the Inhibition of Transcript Initiation by DksA.
    Molodtsov V; Sineva E; Zhang L; Huang X; Cashel M; Ades SE; Murakami KS
    Mol Cell; 2018 Mar; 69(5):828-839.e5. PubMed ID: 29478808
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Inorganic Polyphosphate Accumulation in Escherichia coli Is Regulated by DksA but Not by (p)ppGpp.
    Gray MJ
    J Bacteriol; 2019 May; 201(9):. PubMed ID: 30745375
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Proteomic Characterization of Reversible Thiol Oxidations in Proteomes and Proteins.
    Boronat S; Domènech A; Hidalgo E
    Antioxid Redox Signal; 2017 Mar; 26(7):329-344. PubMed ID: 27089838
    [TBL] [Abstract][Full Text] [Related]  

  • 54. New insights into the regulatory mechanisms of ppGpp and DksA on Escherichia coli RNA polymerase-promoter complex.
    Doniselli N; Rodriguez-Aliaga P; Amidani D; Bardales JA; Bustamante C; Guerra DG; Rivetti C
    Nucleic Acids Res; 2015 May; 43(10):5249-62. PubMed ID: 25916853
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Redoxins as gatekeepers of the transcriptional oxidative stress response.
    Hopkins BL; Neumann CA
    Redox Biol; 2019 Feb; 21():101104. PubMed ID: 30690320
    [TBL] [Abstract][Full Text] [Related]  

  • 56. HIF-1 alpha protein as a target for S-nitrosation.
    Sumbayev VV; Budde A; Zhou J; Brüne B
    FEBS Lett; 2003 Jan; 535(1-3):106-12. PubMed ID: 12560087
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification of redox-sensitive cysteines in the Arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method.
    Liu P; Zhang H; Wang H; Xia Y
    Proteomics; 2014 Mar; 14(6):750-62. PubMed ID: 24376095
    [TBL] [Abstract][Full Text] [Related]  

  • 58. DksA-dependent regulation of RpoS contributes to Borrelia burgdorferi tick-borne transmission and mammalian infectivity.
    Boyle WK; Richards CL; Dulebohn DP; Zalud AK; Shaw JA; Lovas S; Gherardini FC; Bourret TJ
    PLoS Pathog; 2021 Feb; 17(2):e1009072. PubMed ID: 33600418
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Avicinylation (thioesterification): a protein modification that can regulate the response to oxidative and nitrosative stress.
    Haridas V; Kim SO; Nishimura G; Hausladen A; Stamler JS; Gutterman JU
    Proc Natl Acad Sci U S A; 2005 Jul; 102(29):10088-93. PubMed ID: 16030151
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Super DksAs: substitutions in DksA enhancing its effects on transcription initiation.
    Blankschien MD; Lee JH; Grace ED; Lennon CW; Halliday JA; Ross W; Gourse RL; Herman C
    EMBO J; 2009 Jun; 28(12):1720-31. PubMed ID: 19424178
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.