These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 24355300)
1. Microorganism lipid droplets and biofuel development. Liu Y; Zhang C; Shen X; Zhang X; Cichello S; Guan H; Liu P BMB Rep; 2013 Dec; 46(12):575-81. PubMed ID: 24355300 [TBL] [Abstract][Full Text] [Related]
2. Proteomics Analysis of Lipid Droplets from the Oleaginous Alga Chromochloris zofingiensis Reveals Novel Proteins for Lipid Metabolism. Wang X; Wei H; Mao X; Liu J Genomics Proteomics Bioinformatics; 2019 Jun; 17(3):260-272. PubMed ID: 31494267 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of filamentous green algae as feedstocks for biofuel production. Zhang W; Zhao Y; Cui B; Wang H; Liu T Bioresour Technol; 2016 Nov; 220():407-413. PubMed ID: 27598569 [TBL] [Abstract][Full Text] [Related]
4. Induction of oil accumulation by heat stress is metabolically distinct from N stress in the green microalgae Coccomyxa subellipsoidea C169. Allen JW; Tevatia R; Demirel Y; DiRusso CC; Black PN PLoS One; 2018; 13(9):e0204505. PubMed ID: 30261009 [TBL] [Abstract][Full Text] [Related]
5. Metabolic regulation of triacylglycerol accumulation in the green algae: identification of potential targets for engineering to improve oil yield. Goncalves EC; Wilkie AC; Kirst M; Rathinasabapathi B Plant Biotechnol J; 2016 Aug; 14(8):1649-60. PubMed ID: 26801206 [TBL] [Abstract][Full Text] [Related]
6. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Liang MH; Jiang JG Prog Lipid Res; 2013 Oct; 52(4):395-408. PubMed ID: 23685199 [TBL] [Abstract][Full Text] [Related]
7. Identification of the major functional proteins of prokaryotic lipid droplets. Ding Y; Yang L; Zhang S; Wang Y; Du Y; Pu J; Peng G; Chen Y; Zhang H; Yu J; Hang H; Wu P; Yang F; Yang H; Steinbüchel A; Liu P J Lipid Res; 2012 Mar; 53(3):399-411. PubMed ID: 22180631 [TBL] [Abstract][Full Text] [Related]
8. Lipid droplets maintain lipid homeostasis during anaphase for efficient cell separation in budding yeast. Yang PL; Hsu TH; Wang CW; Chen RH Mol Biol Cell; 2016 Aug; 27(15):2368-80. PubMed ID: 27307588 [TBL] [Abstract][Full Text] [Related]
9. Algal production in wastewater treatment high rate algal ponds for potential biofuel use. Park JB; Craggs RJ Water Sci Technol; 2011; 63(10):2403-10. PubMed ID: 21977667 [TBL] [Abstract][Full Text] [Related]
10. High confidence proteomic analysis of yeast LDs identifies additional droplet proteins and reveals connections to dolichol synthesis and sterol acetylation. Currie E; Guo X; Christiano R; Chitraju C; Kory N; Harrison K; Haas J; Walther TC; Farese RV J Lipid Res; 2014 Jul; 55(7):1465-77. PubMed ID: 24868093 [TBL] [Abstract][Full Text] [Related]
11. Proteomic studies of isolated lipid droplets from bacteria, C. elegans, and mammals. Na H; Zhang P; Ding Y; Yang L; Wang Y; Zhang H; Xie Z; Yang F; Cichello S; Liu P Methods Cell Biol; 2013; 116():1-14. PubMed ID: 24099284 [TBL] [Abstract][Full Text] [Related]
12. Integrated green algal technology for bioremediation and biofuel. Sivakumar G; Xu J; Thompson RW; Yang Y; Randol-Smith P; Weathers PJ Bioresour Technol; 2012 Mar; 107():1-9. PubMed ID: 22230775 [TBL] [Abstract][Full Text] [Related]
13. Integrated omics study delineates the dynamics of lipid droplets in Rhodococcus opacus PD630. Chen Y; Ding Y; Yang L; Yu J; Liu G; Wang X; Zhang S; Yu D; Song L; Zhang H; Zhang C; Huo L; Huo C; Wang Y; Du Y; Zhang H; Zhang P; Na H; Xu S; Zhu Y; Xie Z; He T; Zhang Y; Wang G; Fan Z; Yang F; Liu H; Wang X; Zhang X; Zhang MQ; Li Y; Steinbüchel A; Fujimoto T; Cichello S; Yu J; Liu P Nucleic Acids Res; 2014 Jan; 42(2):1052-64. PubMed ID: 24150943 [TBL] [Abstract][Full Text] [Related]
14. The size matters: regulation of lipid storage by lipid droplet dynamics. Yu J; Li P Sci China Life Sci; 2017 Jan; 60(1):46-56. PubMed ID: 27981432 [TBL] [Abstract][Full Text] [Related]
15. The lipid droplet: A conserved cellular organelle. Zhang C; Liu P Protein Cell; 2017 Nov; 8(11):796-800. PubMed ID: 28913786 [TBL] [Abstract][Full Text] [Related]
16. Metabolic and functional connections between cytoplasmic and chloroplast triacylglycerol storage. Xu C; Fan J; Shanklin J Prog Lipid Res; 2020 Nov; 80():101069. PubMed ID: 33127353 [TBL] [Abstract][Full Text] [Related]
17. The proteomics of lipid droplets: structure, dynamics, and functions of the organelle conserved from bacteria to humans. Yang L; Ding Y; Chen Y; Zhang S; Huo C; Wang Y; Yu J; Zhang P; Na H; Zhang H; Ma Y; Liu P J Lipid Res; 2012 Jul; 53(7):1245-53. PubMed ID: 22534641 [TBL] [Abstract][Full Text] [Related]
18. Application of high-content image analysis for quantitatively estimating lipid accumulation in oleaginous yeasts with potential for use in biodiesel production. Capus A; Monnerat M; Ribeiro LC; de Souza W; Martins JL; Sant'Anna C Bioresour Technol; 2016 Mar; 203():309-17. PubMed ID: 26744805 [TBL] [Abstract][Full Text] [Related]
19. Iron rescues glucose-mediated photosynthesis repression during lipid accumulation in the green alga Chromochloris zofingiensis. Jeffers TL; Purvine SO; Nicora CD; McCombs R; Upadhyaya S; Stroumza A; Whang K; Gallaher SD; Dohnalkova A; Merchant SS; Lipton M; Niyogi KK; Roth MS Nat Commun; 2024 Jul; 15(1):6046. PubMed ID: 39025848 [TBL] [Abstract][Full Text] [Related]
20. Lipid droplet autophagy in the yeast Saccharomyces cerevisiae. van Zutphen T; Todde V; de Boer R; Kreim M; Hofbauer HF; Wolinski H; Veenhuis M; van der Klei IJ; Kohlwein SD Mol Biol Cell; 2014 Jan; 25(2):290-301. PubMed ID: 24258026 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]