These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 24355483)

  • 21. Characterizing contrast origins and noise contribution in spin-echo EPI BOLD at 3 T.
    Ragot DM; Chen JJ
    Magn Reson Imaging; 2019 Apr; 57():328-336. PubMed ID: 30439514
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physiological noise in human cerebellar fMRI.
    van der Zwaag W; Jorge J; Butticaz D; Gruetter R
    MAGMA; 2015 Oct; 28(5):485-92. PubMed ID: 25894812
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physiological noise reduction using volumetric functional magnetic resonance inverse imaging.
    Lin FH; Nummenmaa A; Witzel T; Polimeni JR; Zeffiro TA; Wang FN; Belliveau JW
    Hum Brain Mapp; 2012 Dec; 33(12):2815-30. PubMed ID: 21954026
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Concurrent fNIRS and fMRI processing allows independent visualization of the propagation of pressure waves and bulk blood flow in the cerebral vasculature.
    Tong Y; Frederick Bd
    Neuroimage; 2012 Jul; 61(4):1419-27. PubMed ID: 22440649
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correlated slow fluctuations in respiration, EEG, and BOLD fMRI.
    Yuan H; Zotev V; Phillips R; Bodurka J
    Neuroimage; 2013 Oct; 79():81-93. PubMed ID: 23631982
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highcor: a novel data-driven regressor identification method for BOLD fMRI.
    Curtis AT; Menon RS
    Neuroimage; 2014 Sep; 98():184-94. PubMed ID: 24830837
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mapping the MRI voxel volume in which thermal noise matches physiological noise--implications for fMRI.
    Bodurka J; Ye F; Petridou N; Murphy K; Bandettini PA
    Neuroimage; 2007 Jan; 34(2):542-9. PubMed ID: 17101280
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The potential of MR-Encephalography for BCI/Neurofeedback applications with high temporal resolution.
    Lührs M; Riemenschneider B; Eck J; Andonegui AB; Poser BA; Heinecke A; Krause F; Esposito F; Sorger B; Hennig J; Goebel R
    Neuroimage; 2019 Jul; 194():228-243. PubMed ID: 30910728
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phase stability in fMRI time series: effect of noise regression, off-resonance correction and spatial filtering techniques.
    Hagberg GE; Bianciardi M; Brainovich V; Cassara AM; Maraviglia B
    Neuroimage; 2012 Feb; 59(4):3748-61. PubMed ID: 22079450
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of heart rate on the BOLD signal: the cardiac response function.
    Chang C; Cunningham JP; Glover GH
    Neuroimage; 2009 Feb; 44(3):857-69. PubMed ID: 18951982
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of physiological response functions to correct for fluctuations in resting-state fMRI related to heart rate and respiration.
    Kassinopoulos M; Mitsis GD
    Neuroimage; 2019 Nov; 202():116150. PubMed ID: 31487547
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional connectivity in the rat at 11.7T: Impact of physiological noise in resting state fMRI.
    Kalthoff D; Seehafer JU; Po C; Wiedermann D; Hoehn M
    Neuroimage; 2011 Feb; 54(4):2828-39. PubMed ID: 20974263
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling low-frequency fluctuation and hemodynamic response timecourse in event-related fMRI.
    Kay KN; David SV; Prenger RJ; Hansen KA; Gallant JL
    Hum Brain Mapp; 2008 Feb; 29(2):142-56. PubMed ID: 17394212
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Removing motion and physiological artifacts from intrinsic BOLD fluctuations using short echo data.
    Bright MG; Murphy K
    Neuroimage; 2013 Jan; 64(6):526-37. PubMed ID: 23006803
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The impact of "physiological correction" on functional connectivity analysis of pharmacological resting state fMRI.
    Khalili-Mahani N; Chang C; van Osch MJ; Veer IM; van Buchem MA; Dahan A; Beckmann CF; van Gerven JM; Rombouts SA
    Neuroimage; 2013 Jan; 65():499-510. PubMed ID: 23022093
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic retrospective filtering of physiological noise in BOLD fMRI: DRIFTER.
    Särkkä S; Solin A; Nummenmaa A; Vehtari A; Auranen T; Vanni S; Lin FH
    Neuroimage; 2012 Apr; 60(2):1517-27. PubMed ID: 22281675
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of data acquisition parameters, and analysis techniques for noise reduction in spinal cord fMRI data.
    Bosma RL; Stroman PW
    Magn Reson Imaging; 2014 Jun; 32(5):473-81. PubMed ID: 24602827
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the origins of signal variance in FMRI of the human midbrain at high field.
    Barry RL; Coaster M; Rogers BP; Newton AT; Moore J; Anderson AW; Zald DH; Gore JC
    PLoS One; 2013; 8(4):e62708. PubMed ID: 23658643
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Partitioning of physiological noise signals in the brain with concurrent near-infrared spectroscopy and fMRI.
    Tong Y; Lindsey KP; deB Frederick B
    J Cereb Blood Flow Metab; 2011 Dec; 31(12):2352-62. PubMed ID: 21811288
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancement of temporal resolution and BOLD sensitivity in real-time fMRI using multi-slab echo-volumar imaging.
    Posse S; Ackley E; Mutihac R; Rick J; Shane M; Murray-Krezan C; Zaitsev M; Speck O
    Neuroimage; 2012 May; 61(1):115-30. PubMed ID: 22398395
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.