BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 24355618)

  • 1. Towards better modeling of chitosan nanoparticles production: screening different factors and comparing two experimental designs.
    Abdel-Hafez SM; Hathout RM; Sammour OA
    Int J Biol Macromol; 2014 Mar; 64():334-40. PubMed ID: 24355618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of preparation parameters on ultra low molecular weight chitosan/hyaluronic acid nanoparticles.
    Nazeri N; Avadi MR; Faramarzi MA; Safarian S; Tavoosidana G; Khoshayand MR; Amani A
    Int J Biol Macromol; 2013 Nov; 62():642-6. PubMed ID: 24099942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of particle size and encapsulation efficiency of vancomycin nanoparticles by response surface methodology.
    Honary S; Ebrahimi P; Hadianamrei R
    Pharm Dev Technol; 2014 Dec; 19(8):987-98. PubMed ID: 24147898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery.
    Gan Q; Wang T; Cochrane C; McCarron P
    Colloids Surf B Biointerfaces; 2005 Aug; 44(2-3):65-73. PubMed ID: 16024239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: in vitro and in vivo assessment.
    Bagre AP; Jain K; Jain NK
    Int J Pharm; 2013 Nov; 456(1):31-40. PubMed ID: 23994363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique.
    Fan W; Yan W; Xu Z; Ni H
    Colloids Surf B Biointerfaces; 2012 Feb; 90():21-7. PubMed ID: 22014934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of chitosan/tripolyphosphate nanoparticles with highly tunable size and low polydispersity.
    Sawtarie N; Cai Y; Lapitsky Y
    Colloids Surf B Biointerfaces; 2017 Sep; 157():110-117. PubMed ID: 28578269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile preparation of well-defined near-monodisperse chitosan/sodium alginate polyelectrolyte complex nanoparticles (CS/SAL NPs) via ionotropic gelification: a suitable technique for drug delivery systems.
    Liu P; Zhao X
    Biotechnol J; 2013 Jul; 8(7):847-54. PubMed ID: 23625874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of fabrication parameters to produce chitosan-tripolyphosphate nanoparticles for delivery of tea catechins.
    Hu B; Pan C; Sun Y; Hou Z; Ye H; Zeng X
    J Agric Food Chem; 2008 Aug; 56(16):7451-8. PubMed ID: 18627163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and characterisation of chitosan nanoparticles for siRNA delivery.
    Katas H; Alpar HO
    J Control Release; 2006 Oct; 115(2):216-25. PubMed ID: 16959358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monodisperse chitosan nanoparticles for mucosal drug delivery.
    Zhang H; Oh M; Allen C; Kumacheva E
    Biomacromolecules; 2004; 5(6):2461-8. PubMed ID: 15530064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of processing parameters on particle size of ultrasound prepared chitosan nanoparticles: an Artificial Neural Networks Study.
    Esmaeilzadeh-Gharedaghi E; Faramarzi MA; Amini MA; Rouholamini Najafabadi A; Rezayat SM; Amani A
    Pharm Dev Technol; 2012; 17(5):638-47. PubMed ID: 22681416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methotrexate loading in chitosan nanoparticles at a novel pH: Response surface modeling, optimization and characterization.
    Hashad RA; Ishak RA; Geneidi AS; Mansour S
    Int J Biol Macromol; 2016 Oct; 91():630-9. PubMed ID: 27283234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insight on the formation of chitosan nanoparticles through ionotropic gelation with tripolyphosphate.
    Koukaras EN; Papadimitriou SA; Bikiaris DN; Froudakis GE
    Mol Pharm; 2012 Oct; 9(10):2856-62. PubMed ID: 22845012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of physicochemical parameters influencing the fabrication of protein-loaded chitosan nanoparticles.
    Vandana M; Sahoo SK
    Nanomedicine (Lond); 2009 Oct; 4(7):773-85. PubMed ID: 19839813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of physical parameters on particle size and reaction yield when using the ionic gelation method to obtain cationic polymeric chitosan-tripolyphosphate nanoparticles.
    Fàbregas A; Miñarro M; García-Montoya E; Pérez-Lozano P; Carrillo C; Sarrate R; Sánchez N; Ticó JR; Suñé-Negre JM
    Int J Pharm; 2013 Mar; 446(1-2):199-204. PubMed ID: 23434543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and optimization of chitosan nanoparticles and magnetic chitosan nanoparticles as delivery systems using Box-Behnken statistical design.
    Elmizadeh H; Khanmohammadi M; Ghasemi K; Hassanzadeh G; Nassiri-Asl M; Garmarudi AB
    J Pharm Biomed Anal; 2013 Jun; 80():141-6. PubMed ID: 23571126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cavitation effect on chitosan nanoparticle size: a possible approach to protect drugs from ultrasonic stress.
    Floris A; Meloni MC; Lai F; Marongiu F; Maccioni AM; Sinico C
    Carbohydr Polym; 2013 Apr; 94(1):619-25. PubMed ID: 23544582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of N,O-carboxymethyl chitosan nanoparticles as an insulin carrier.
    Lin CC; Lin CW
    Drug Deliv; 2009 Nov; 16(8):458-64. PubMed ID: 19839790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chitosan/sulfobutylether-β-cyclodextrin nanoparticles as a potential approach for ocular drug delivery.
    Mahmoud AA; El-Feky GS; Kamel R; Awad GE
    Int J Pharm; 2011 Jul; 413(1-2):229-36. PubMed ID: 21540097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.