These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1099 related articles for article (PubMed ID: 24355748)
1. Analysis of Hydra PIWI proteins and piRNAs uncover early evolutionary origins of the piRNA pathway. Lim RS; Anand A; Nishimiya-Fujisawa C; Kobayashi S; Kai T Dev Biol; 2014 Feb; 386(1):237-51. PubMed ID: 24355748 [TBL] [Abstract][Full Text] [Related]
2. PIWI-piRNA pathway-mediated transposable element repression in Teefy BB; Siebert S; Cazet JF; Lin H; Juliano CE RNA; 2020 May; 26(5):550-563. PubMed ID: 32075940 [TBL] [Abstract][Full Text] [Related]
3. PIWI proteins and PIWI-interacting RNAs function in Hydra somatic stem cells. Juliano CE; Reich A; Liu N; Götzfried J; Zhong M; Uman S; Reenan RA; Wessel GM; Steele RE; Lin H Proc Natl Acad Sci U S A; 2014 Jan; 111(1):337-42. PubMed ID: 24367095 [TBL] [Abstract][Full Text] [Related]
4. A critical role for nucleoporin 358 (Nup358) in transposon silencing and piRNA biogenesis in Parikh RY; Lin H; Gangaraju VK J Biol Chem; 2018 Jun; 293(24):9140-9147. PubMed ID: 29735528 [TBL] [Abstract][Full Text] [Related]
5. The Tudor domain protein Tapas, a homolog of the vertebrate Tdrd7, functions in the piRNA pathway to regulate retrotransposons in germline of Drosophila melanogaster. Patil VS; Anand A; Chakrabarti A; Kai T BMC Biol; 2014 Oct; 12():61. PubMed ID: 25287931 [TBL] [Abstract][Full Text] [Related]
6. An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster. Yin H; Lin H Nature; 2007 Nov; 450(7167):304-8. PubMed ID: 17952056 [TBL] [Abstract][Full Text] [Related]
7. piRNA pathway and the potential processing site, the nuage, in the Drosophila germline. Pek JW; Patil VS; Kai T Dev Growth Differ; 2012 Jan; 54(1):66-77. PubMed ID: 23741748 [TBL] [Abstract][Full Text] [Related]
8. [The interplay of transposon silencing genes in the Drosophila melanogaster germline]. Sokolova OA; Iakushev EIu; Stoliarenko AD; Mikhaleva EA; Gvozdev VA; Klenov MS Mol Biol (Mosk); 2011; 45(4):633-41. PubMed ID: 21954595 [TBL] [Abstract][Full Text] [Related]
9. The piRNA pathway is developmentally regulated during spermatogenesis in Drosophila. Quénerch'du E; Anand A; Kai T RNA; 2016 Jul; 22(7):1044-54. PubMed ID: 27208314 [TBL] [Abstract][Full Text] [Related]
10. The piRNA pathway in Drosophila ovarian germ and somatic cells. Sato K; Siomi MC Proc Jpn Acad Ser B Phys Biol Sci; 2020; 96(1):32-42. PubMed ID: 31932527 [TBL] [Abstract][Full Text] [Related]
11. piRNA-guided slicing of transposon transcripts enforces their transcriptional silencing via specifying the nuclear piRNA repertoire. Senti KA; Jurczak D; Sachidanandam R; Brennecke J Genes Dev; 2015 Aug; 29(16):1747-62. PubMed ID: 26302790 [TBL] [Abstract][Full Text] [Related]
12. PAPI, a novel TUDOR-domain protein, complexes with AGO3, ME31B and TRAL in the nuage to silence transposition. Liu L; Qi H; Wang J; Lin H Development; 2011 May; 138(9):1863-73. PubMed ID: 21447556 [TBL] [Abstract][Full Text] [Related]
13. Maternally inherited piRNAs direct transient heterochromatin formation at active transposons during early Fabry MH; Falconio FA; Joud F; Lythgoe EK; Czech B; Hannon GJ Elife; 2021 Jul; 10():. PubMed ID: 34236313 [TBL] [Abstract][Full Text] [Related]
14. PIWI Slicing and EXD1 Drive Biogenesis of Nuclear piRNAs from Cytosolic Targets of the Mouse piRNA Pathway. Yang Z; Chen KM; Pandey RR; Homolka D; Reuter M; Janeiro BK; Sachidanandam R; Fauvarque MO; McCarthy AA; Pillai RS Mol Cell; 2016 Jan; 61(1):138-52. PubMed ID: 26669262 [TBL] [Abstract][Full Text] [Related]
15. The tudor domain protein kumo is required to assemble the nuage and to generate germline piRNAs in Drosophila. Anand A; Kai T EMBO J; 2012 Feb; 31(4):870-82. PubMed ID: 22157814 [TBL] [Abstract][Full Text] [Related]
16. A novel organelle, the piNG-body, in the nuage of Drosophila male germ cells is associated with piRNA-mediated gene silencing. Kibanov MV; Egorova KS; Ryazansky SS; Sokolova OA; Kotov AA; Olenkina OM; Stolyarenko AD; Gvozdev VA; Olenina LV Mol Biol Cell; 2011 Sep; 22(18):3410-9. PubMed ID: 21775629 [TBL] [Abstract][Full Text] [Related]
17. A role for Fkbp6 and the chaperone machinery in piRNA amplification and transposon silencing. Xiol J; Cora E; Koglgruber R; Chuma S; Subramanian S; Hosokawa M; Reuter M; Yang Z; Berninger P; Palencia A; Benes V; Penninger J; Sachidanandam R; Pillai RS Mol Cell; 2012 Sep; 47(6):970-9. PubMed ID: 22902560 [TBL] [Abstract][Full Text] [Related]
18. piRNA-mediated silencing in Drosophila germlines. Siomi MC; Miyoshi T; Siomi H Semin Cell Dev Biol; 2010 Sep; 21(7):754-9. PubMed ID: 20080197 [TBL] [Abstract][Full Text] [Related]
19. The absence of core piRNA biogenesis factors does not impact efficient transposon silencing in Drosophila. Chary S; Hayashi R PLoS Biol; 2023 Jun; 21(6):e3002099. PubMed ID: 37279192 [TBL] [Abstract][Full Text] [Related]
20. The Drosophila HP1 homolog Rhino is required for transposon silencing and piRNA production by dual-strand clusters. Klattenhoff C; Xi H; Li C; Lee S; Xu J; Khurana JS; Zhang F; Schultz N; Koppetsch BS; Nowosielska A; Seitz H; Zamore PD; Weng Z; Theurkauf WE Cell; 2009 Sep; 138(6):1137-49. PubMed ID: 19732946 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]