These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 24356108)
1. Time-dependent changes in motor cortical excitability by electrical stimulation combined with voluntary drive. Sugawara K; Yamaguchi T; Tanabe S; Suzuki T; Saito K; Higashi T Neuroreport; 2014 Apr; 25(6):404-9. PubMed ID: 24356108 [TBL] [Abstract][Full Text] [Related]
2. Effect of neuromuscular electrical stimulation on motor cortex excitability upon release of tonic muscle contraction. Sugawara K; Tanabe S; Suzuki T; Higashi T Somatosens Mot Res; 2016; 33(3-4):161-168. PubMed ID: 27666529 [TBL] [Abstract][Full Text] [Related]
3. Changes of excitability in M1 induced by neuromuscular electrical stimulation differ between presence and absence of voluntary drive. Sugawara K; Tanabe S; Higashi T; Tsurumi T; Kasai T Int J Rehabil Res; 2011 Jun; 34(2):100-9. PubMed ID: 21088609 [TBL] [Abstract][Full Text] [Related]
4. Different motor learning effects on excitability changes of motor cortex in muscle contraction state. Sugawara K; Tanabe S; Suzuki T; Higashi T Somatosens Mot Res; 2013 Sep; 30(3):133-9. PubMed ID: 23560694 [TBL] [Abstract][Full Text] [Related]
5. Effect of electrical stimulation of antagonist muscles for voluntary motor drive. Sugawara K; Tanabe S; Suzuki T; Higashi T Somatosens Mot Res; 2019 Jun; 36(2):109-115. PubMed ID: 31092131 [TBL] [Abstract][Full Text] [Related]
6. Induction of cortical plasticity for reciprocal muscles by paired associative stimulation. Suzuki M; Kirimoto H; Sugawara K; Watanabe M; Shimizu S; Ishizaka I; Yamada S; Matsunaga A; Fukuda M; Onishi H Brain Behav; 2014; 4(6):822-32. PubMed ID: 25365805 [TBL] [Abstract][Full Text] [Related]
7. Vibration prolongs the cortical silent period in an antagonistic muscle. Binder C; Kaya AE; Liepert J Muscle Nerve; 2009 Jun; 39(6):776-80. PubMed ID: 19334048 [TBL] [Abstract][Full Text] [Related]
8. Remote facilitation of supraspinal motor excitability depends on the level of effort. Tazoe T; Sakamoto M; Nakajima T; Endoh T; Shiozawa S; Komiyama T Eur J Neurosci; 2009 Oct; 30(7):1297-305. PubMed ID: 19769593 [TBL] [Abstract][Full Text] [Related]
9. Corticospinal control of wrist muscles during expectation of a motor perturbation: a transcranial magnetic stimulation study. Meziane HB; Spieser L; Pailhous J; Bonnard M Behav Brain Res; 2009 Mar; 198(2):459-65. PubMed ID: 19073218 [TBL] [Abstract][Full Text] [Related]
10. Reciprocal changes in input-output curves of motor evoked potentials while learning motor skills. Suzuki M; Kirimoto H; Onishi H; Yamada S; Tamaki H; Maruyama A; Yamamoto J Brain Res; 2012 Sep; 1473():114-23. PubMed ID: 22871269 [TBL] [Abstract][Full Text] [Related]
11. Corticomotor excitability changes seen in the resting forearm during contralateral rhythmical movement and force manipulations: a TMS study. Ibey RJ; Staines WR Behav Brain Res; 2013 Nov; 257():265-74. PubMed ID: 24070855 [TBL] [Abstract][Full Text] [Related]
12. Long-term effects on motor cortical excitability induced by repeated muscle vibration during contraction in healthy subjects. Marconi B; Filippi GM; Koch G; Pecchioli C; Salerno S; Don R; Camerota F; Saraceni VM; Caltagirone C J Neurol Sci; 2008 Dec; 275(1-2):51-9. PubMed ID: 18760809 [TBL] [Abstract][Full Text] [Related]
13. Modification of motor cortex excitability during muscle relaxation in motor learning. Sugawara K; Tanabe S; Suzuki T; Saitoh K; Higashi T Behav Brain Res; 2016 Jan; 296():78-84. PubMed ID: 26341320 [TBL] [Abstract][Full Text] [Related]
14. Changes in segmental and motor cortical output with contralateral muscle contractions and altered sensory inputs in humans. Hortobágyi T; Taylor JL; Petersen NT; Russell G; Gandevia SC J Neurophysiol; 2003 Oct; 90(4):2451-9. PubMed ID: 14534271 [TBL] [Abstract][Full Text] [Related]
15. Real-time changes in corticospinal excitability related to motor imagery of a force control task. Tatemoto T; Tsuchiya J; Numata A; Osawa R; Yamaguchi T; Tanabe S; Kondo K; Otaka Y; Sugawara K Behav Brain Res; 2017 Sep; 335():185-190. PubMed ID: 28827129 [TBL] [Abstract][Full Text] [Related]
16. Motor cortical plasticity in extrinsic hand muscles is determined by the resting thresholds of overlapping representations. Mirdamadi JL; Suzuki LY; Meehan SK Neuroscience; 2016 Oct; 333():132-9. PubMed ID: 27425211 [TBL] [Abstract][Full Text] [Related]
17. The effect of simultaneous contractions of ipsilateral muscles on changes in corticospinal excitability induced by paired associative stimulation (PAS). Kennedy NC; Carson RG Neurosci Lett; 2008 Nov; 445(1):7-11. PubMed ID: 18771706 [TBL] [Abstract][Full Text] [Related]
18. Corticomotor excitability of wrist flexor and extensor muscles during active and passive movement. Chye L; Nosaka K; Murray L; Edwards D; Thickbroom G Hum Mov Sci; 2010 Aug; 29(4):494-501. PubMed ID: 20537743 [TBL] [Abstract][Full Text] [Related]
19. Evidence That Brain-Controlled Functional Electrical Stimulation Could Elicit Targeted Corticospinal Facilitation of Hand Muscles in Healthy Young Adults. Suzuki Y; Jovanovic LI; Fadli RA; Yamanouchi Y; Marquez-Chin C; Popovic MR; Nomura T; Milosevic M Neuromodulation; 2023 Dec; 26(8):1612-1621. PubMed ID: 35088740 [TBL] [Abstract][Full Text] [Related]
20. Real-time changes in corticospinal excitability during voluntary contraction with concurrent electrical stimulation. Yamaguchi T; Sugawara K; Tanaka S; Yoshida N; Saito K; Tanabe S; Muraoka Y; Liu M PLoS One; 2012; 7(9):e46122. PubMed ID: 23049955 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]