BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 24356437)

  • 1. Free-standing and binder-free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers.
    Li W; Zeng L; Yang Z; Gu L; Wang J; Liu X; Cheng J; Yu Y
    Nanoscale; 2014 Jan; 6(2):693-8. PubMed ID: 24356437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ formation of hollow graphitic carbon nanospheres in electrospun amorphous carbon nanofibers for high-performance Li-based batteries.
    Chen Y; Lu Z; Zhou L; Mai YW; Huang H
    Nanoscale; 2012 Nov; 4(21):6800-5. PubMed ID: 23000946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphologically robust NiFe2O4 nanofibers as high capacity Li-ion battery anode material.
    Cherian CT; Sundaramurthy J; Reddy MV; Suresh Kumar P; Mani K; Pliszka D; Sow CH; Ramakrishna S; Chowdari BV
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):9957-63. PubMed ID: 24099146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode.
    Zhu Y; Han X; Xu Y; Liu Y; Zheng S; Xu K; Hu L; Wang C
    ACS Nano; 2013 Jul; 7(7):6378-86. PubMed ID: 23802576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-crystalline metal germanate nanowire-carbon textiles as binder-free, self-supported anodes for high-performance lithium storage.
    Li W; Wang X; Liu B; Xu J; Liang B; Luo T; Luo S; Chen D; Shen G
    Nanoscale; 2013 Nov; 5(21):10291-9. PubMed ID: 24056774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pitaya-like Sn@C nanocomposites as high-rate and long-life anode for lithium-ion batteries.
    Zhang N; Zhao Q; Han X; Yang J; Chen J
    Nanoscale; 2014 Mar; 6(5):2827-32. PubMed ID: 24468961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrospun Ni-added SnO2-carbon nanofiber composite anode for high-performance lithium-ion batteries.
    Kim D; Lee D; Kim J; Moon J
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5408-15. PubMed ID: 22999049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct large-scale synthesis of 3D hierarchical mesoporous NiO microspheres as high-performance anode materials for lithium ion batteries.
    bai Z; Ju Z; Guo C; Qian Y; Tang B; Xiong S
    Nanoscale; 2014 Mar; 6(6):3268-73. PubMed ID: 24509514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and li storage properties of hierarchical porous carbon fibers derived from alginic acid.
    Wu XL; Chen LL; Xin S; Yin YX; Guo YG; Kong QS; Xia YZ
    ChemSusChem; 2010 Jun; 3(6):703-7. PubMed ID: 20480495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free-standing Ag/C coaxial hybrid electrodes as anodes for Li-ion batteries.
    Fu L; Tang K; Chen CC; Liu L; Guo X; Yu Y; Maier J
    Nanoscale; 2013 Dec; 5(23):11568-71. PubMed ID: 24114078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospun silicon nanoparticle/porous carbon hybrid nanofibers for lithium-ion batteries.
    Zhou X; Wan LJ; Guo YG
    Small; 2013 Aug; 9(16):2684-8. PubMed ID: 23463677
    [No Abstract]   [Full Text] [Related]  

  • 12. Carbon-coated LiFePO4-porous carbon composites as cathode materials for lithium ion batteries.
    Ni H; Liu J; Fan LZ
    Nanoscale; 2013 Mar; 5(5):2164-8. PubMed ID: 23389625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel strategy to construct high performance lithium-ion cells using one dimensional electrospun nanofibers, electrodes and separators.
    Aravindan V; Sundaramurthy J; Kumar PS; Shubha N; Ling WC; Ramakrishna S; Madhavi S
    Nanoscale; 2013 Nov; 5(21):10636-45. PubMed ID: 24057339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CuO Quantum Dots Embedded in Carbon Nanofibers as Binder-Free Anode for Sodium Ion Batteries with Enhanced Properties.
    Wang X; Liu Y; Wang Y; Jiao L
    Small; 2016 Sep; 12(35):4865-4872. PubMed ID: 27345598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ encapsulation of germanium clusters in carbon nanofibers: high-performance anodes for lithium-ion batteries.
    Wang W; Xiao Y; Wang X; Liu B; Cao M
    ChemSusChem; 2014 Oct; 7(10):2914-22. PubMed ID: 25154731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MoO2-ordered mesoporous carbon hybrids as anode materials with highly improved rate capability and reversible capacity for lithium-ion battery.
    Chen A; Li C; Tang R; Yin L; Qi Y
    Phys Chem Chem Phys; 2013 Aug; 15(32):13601-10. PubMed ID: 23832242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Germanium nanoparticles encapsulated in flexible carbon nanofibers as self-supported electrodes for high performance lithium-ion batteries.
    Li W; Yang Z; Cheng J; Zhong X; Gu L; Yu Y
    Nanoscale; 2014 May; 6(9):4532-7. PubMed ID: 24663690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon and graphene double protection strategy to improve the SnO(x) electrode performance anodes for lithium-ion batteries.
    Zhu J; Lei D; Zhang G; Li Q; Lu B; Wang T
    Nanoscale; 2013 Jun; 5(12):5499-505. PubMed ID: 23670638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A three-dimensional hierarchical Fe2O3@NiO core/shell nanorod array on carbon cloth: a new class of anode for high-performance lithium-ion batteries.
    Xiong QQ; Tu JP; Xia XH; Zhao XY; Gu CD; Wang XL
    Nanoscale; 2013 Sep; 5(17):7906-12. PubMed ID: 23851378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrogen-doped porous carbon/Co3O4 nanocomposites as anode materials for lithium-ion batteries.
    Wang L; Zheng Y; Wang X; Chen S; Xu F; Zuo L; Wu J; Sun L; Li Z; Hou H; Song Y
    ACS Appl Mater Interfaces; 2014 May; 6(10):7117-25. PubMed ID: 24802130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.