BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 24356437)

  • 21. Facile synthesis of novel tunable highly porous CuO nanorods for high rate lithium battery anodes with realized long cycle life and high reversible capacity.
    Wang L; Gong H; Wang C; Wang D; Tang K; Qian Y
    Nanoscale; 2012 Nov; 4(21):6850-5. PubMed ID: 23034730
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three-dimensional Sn-graphene anode for high-performance lithium-ion batteries.
    Wang C; Li Y; Chui YS; Wu QH; Chen X; Zhang W
    Nanoscale; 2013 Nov; 5(21):10599-604. PubMed ID: 24057017
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Self-assembly of hierarchical star-like Co3O4 micro/nanostructures and their application in lithium ion batteries.
    Li L; Seng KH; Chen Z; Guo Z; Liu HK
    Nanoscale; 2013 Mar; 5(5):1922-8. PubMed ID: 23354317
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improved elevated temperature performance of Al-intercalated V(2)O(5) electrospun nanofibers for lithium-ion batteries.
    Cheah YL; Aravindan V; Madhavi S
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):3270-7. PubMed ID: 22616641
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Instant gelation synthesis of 3D porous MoS2@C nanocomposites for lithium ion batteries.
    Fei L; Xu Y; Wu X; Chen G; Li Y; Li B; Deng S; Smirnov S; Fan H; Luo H
    Nanoscale; 2014 Apr; 6(7):3664-9. PubMed ID: 24567121
    [TBL] [Abstract][Full Text] [Related]  

  • 26. α-Fe2O3 nanoparticle-loaded carbon nanofibers as stable and high-capacity anodes for rechargeable lithium-ion batteries.
    Ji L; Toprakci O; Alcoutlabi M; Yao Y; Li Y; Zhang S; Guo B; Lin Z; Zhang X
    ACS Appl Mater Interfaces; 2012 May; 4(5):2672-9. PubMed ID: 22524417
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Encapsulating Sn(x)Sb Nanoparticles in Multichannel Graphene-Carbon Fibers As Flexible Anodes to Store Lithium Ions with High Capacities.
    Tang X; Yan F; Wei Y; Zhang M; Wang T; Zhang T
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):21890-7. PubMed ID: 26371535
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Co3O4/carbon aerogel hybrids as anode materials for lithium-ion batteries with enhanced electrochemical properties.
    Hao F; Zhang Z; Yin L
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8337-44. PubMed ID: 23924311
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In situ thermally cross-linked polyacrylonitrile as binder for high-performance silicon as lithium ion battery anode.
    Shen L; Shen L; Wang Z; Chen L
    ChemSusChem; 2014 Jul; 7(7):1951-6. PubMed ID: 24782265
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High Performance Particle/Polymer Nanofiber Anodes for Li-ion Batteries using Electrospinning.
    Self EC; McRen EC; Pintauro PN
    ChemSusChem; 2016 Jan; 9(2):208-15. PubMed ID: 26749072
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A hierarchical porous electrode using a micron-sized honeycomb-like carbon material for high capacity lithium-oxygen batteries.
    Li J; Zhang H; Zhang Y; Wang M; Zhang F; Nie H
    Nanoscale; 2013 Jun; 5(11):4647-51. PubMed ID: 23575645
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-performance supercapacitor and lithium-ion battery based on 3D hierarchical NH4F-induced nickel cobaltate nanosheet-nanowire cluster arrays as self-supported electrodes.
    Chen Y; Qu B; Hu L; Xu Z; Li Q; Wang T
    Nanoscale; 2013 Oct; 5(20):9812-20. PubMed ID: 23969779
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Poly(ionic liquid)-Derived N-Doped Carbons with Hierarchical Porosity for Lithium- and Sodium-Ion Batteries.
    Alkarmo W; Ouhib F; Aqil A; Thomassin JM; Yuan J; Gong J; Vertruyen B; Detrembleur C; Jérôme C
    Macromol Rapid Commun; 2019 Jan; 40(1):e1800545. PubMed ID: 30284334
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability.
    Qie L; Chen WM; Wang ZH; Shao QG; Li X; Yuan LX; Hu XL; Zhang WX; Huang YH
    Adv Mater; 2012 Apr; 24(15):2047-50. PubMed ID: 22422374
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis of Fe3O4@C core-shell nanorings and their enhanced electrochemical performance for lithium-ion batteries.
    Wang L; Liang J; Zhu Y; Mei T; Zhang X; Yang Q; Qian Y
    Nanoscale; 2013 May; 5(9):3627-31. PubMed ID: 23519322
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solution-grown germanium nanowire anodes for lithium-ion batteries.
    Chockla AM; Klavetter KC; Mullins CB; Korgel BA
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4658-64. PubMed ID: 22894797
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct planting of ultrafine MoO2+δ nanoparticles in carbon nanofibers by electrospinning: self-supported mats as binder-free and long-life anodes for lithium-ion batteries.
    Liu X; Xu H; Huang Y; Hu X
    Phys Chem Chem Phys; 2016 Jul; 18(29):19832-7. PubMed ID: 27388809
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Upcycling of Packing-Peanuts into Carbon Microsheet Anodes for Lithium-Ion Batteries.
    Etacheri V; Hong CN; Pol VG
    Environ Sci Technol; 2015 Sep; 49(18):11191-8. PubMed ID: 26098219
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Porous nitrogen-doped carbon derived from silk fibroin protein encapsulating sulfur as a superior cathode material for high-performance lithium-sulfur batteries.
    Zhang J; Cai Y; Zhong Q; Lai D; Yao J
    Nanoscale; 2015 Nov; 7(42):17791-7. PubMed ID: 26456870
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A simple L-cysteine-assisted method for the growth of MoS2 nanosheets on carbon nanotubes for high-performance lithium ion batteries.
    Park SK; Yu SH; Woo S; Quan B; Lee DC; Kim MK; Sung YE; Piao Y
    Dalton Trans; 2013 Feb; 42(7):2399-405. PubMed ID: 23208383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.