BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 24356930)

  • 21. Platelet collagen receptors and coagulation. A characteristic platelet response as possible target for antithrombotic treatment.
    Heemskerk JW; Kuijpers MJ; Munnix IC; Siljander PR
    Trends Cardiovasc Med; 2005 Apr; 15(3):86-92. PubMed ID: 16039967
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flow cytometric analysis of the platelet surface area and surface density of glycoprotein IIb-IIIa of unactivated human platelets of various sizes.
    Leytin V; Shapiro H; Novikov I; Radnay J
    Biochem Biophys Res Commun; 1996 Sep; 226(1):94-100. PubMed ID: 8806597
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alpha-tocopherol modulates phosphatidylserine externalization in erythrocytes: relevance in phospholipid transfer protein-deficient mice.
    Klein A; Deckert V; Schneider M; Dutrillaux F; Hammann A; Athias A; Le Guern N; Pais de Barros JP; Desrumaux C; Masson D; Jiang XC; Lagrost L
    Arterioscler Thromb Vasc Biol; 2006 Sep; 26(9):2160-7. PubMed ID: 16825594
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reassociation and translocation of glycoprotein IIB-IIIA in EDTA-treated human platelets.
    Ma Y; Wong K
    Platelets; 2007 Sep; 18(6):451-9. PubMed ID: 17763154
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Trivalent methylated arsenical-induced phosphatidylserine exposure and apoptosis in platelets may lead to increased thrombus formation.
    Bae ON; Lim KM; Noh JY; Chung SM; Kim SH; Chung JH
    Toxicol Appl Pharmacol; 2009 Sep; 239(2):144-53. PubMed ID: 19167414
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Palmitoylation supports the association of tetraspanin CD63 with CD9 and integrin alphaIIbbeta3 in activated platelets.
    Israels SJ; McMillan-Ward EM
    Thromb Res; 2010 Feb; 125(2):152-8. PubMed ID: 19640571
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Factor VIII contributes to platelet-fibrin thrombus formation via thrombin generation under low shear conditions.
    Sugita C; Yamashita A; Moriguchi-Goto S; Furukoji E; Takahashi M; Harada A; Soeda T; Kitazawa T; Hattori K; Tamura S; Asada Y
    Thromb Res; 2009 Nov; 124(5):601-7. PubMed ID: 19660789
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thrombus formation and platelet-vessel wall interaction in the nephrotic syndrome under flow conditions.
    Zwaginga JJ; Koomans HA; Sixma JJ; Rabelink TJ
    J Clin Invest; 1994 Jan; 93(1):204-11. PubMed ID: 8282789
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Roles of Mac-1 and glycoprotein IIb/IIIa integrins in leukocyte-platelet aggregate formation: stabilization by Mac-1 and inhibition by GpIIb/IIIa blockers.
    Patko Z; Csaszar A; Acsady G; Peter K; Schwarz M
    Platelets; 2012; 23(5):368-75. PubMed ID: 22671289
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrin alphaIIbbeta3 and shear-dependent action of glycoprotein Ibalpha stimulate platelet-dependent thrombin formation in stirred plasma.
    Keuren JF; Ulrichts H; Feijge MA; Hamulyak K; Deckmyn H; Lindhout T; Heemskerk JW
    J Lab Clin Med; 2003 May; 141(5):350-8. PubMed ID: 12761479
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Erythrocyte and platelet proteomics in hematological disorders.
    Chakrabarti A; Halder S; Karmakar S
    Proteomics Clin Appl; 2016 Apr; 10(4):403-14. PubMed ID: 26611378
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Erythrocyte-platelet interaction in uncomplicated pregnancy.
    Swanepoel AC; Pretorius E
    Microsc Microanal; 2014 Dec; 20(6):1848-60. PubMed ID: 25470019
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Red blood cells: their dual role in thrombus formation.
    Turitto VT; Weiss HJ
    Science; 1980 Feb; 207(4430):541-3. PubMed ID: 7352265
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Erythrocyte oxidative stress and thrombosis.
    Bettiol A; Galora S; Argento FR; Fini E; Emmi G; Mattioli I; Bagni G; Fiorillo C; Becatti M
    Expert Rev Mol Med; 2022 Aug; 24():e31. PubMed ID: 36017709
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein carboxymethylase and methyl-acceptor proteins in human platelets and erythrocytes.
    O'Dea RF; Viveros OH; Acheson A; Gorman C; Axelrod J
    Biochem Pharmacol; 1978 Mar; 27(5):679-84. PubMed ID: 656107
    [No Abstract]   [Full Text] [Related]  

  • 36. Mechanisms of blood coagulation induced by latex particles and the roles of blood cells.
    Miyamoto M; Sasakawa S; Ozawa T; Kawaguchi H; Ohtsuka Y
    Biomaterials; 1990 Aug; 11(6):385-8. PubMed ID: 2207226
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Theoretical model of phase separation of erythrocytes, platelets, and plasma at branches.
    Perkkiö J; Hokkanen J; Keskinen R
    Med Phys; 1986; 13(6):882-6. PubMed ID: 3796486
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microscopy and viscometry of blood flowing under uniform shear rate (rheoscopy).
    Schmid-Schoenbein H; Wells R; Schildkraut R
    J Appl Physiol; 1969 May; 26(5):674-8. PubMed ID: 5781626
    [No Abstract]   [Full Text] [Related]  

  • 39. Rheology of thrombotic processes in flow: the interaction of erythrocytes and thrombocytes subjected to high flow forces.
    Schmid-Schönbein H; Born GV; Richardson PD; Cusack N; Rieger H; Forst R; Rohling-Winkel I; Blasberg P; Wehmeyer A
    Biorheology; 1981; 18(3-6):415-44. PubMed ID: 7326385
    [No Abstract]   [Full Text] [Related]  

  • 40. Capillary pore rheology of erythrocytes. II. A method for the preparation of leucocyte-poor erythrocyte suspensions suitable for capillary pore rheometry.
    Lingard PS
    Microvasc Res; 1974 Sep; 8(2):181-91. PubMed ID: 4140458
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.