These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 24356941)

  • 1. Ab initio protein folding simulations using atomic burials as informational intermediates between sequence and structure.
    van der Linden MG; Ferreira DC; de Oliveira LC; Onuchic JN; de Araújo AF
    Proteins; 2014 Jul; 82(7):1186-99. PubMed ID: 24356941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Information and redundancy in the burial folding code of globular proteins within a wide range of shapes and sizes.
    Ferreira DC; van der Linden MG; de Oliveira LC; Onuchic JN; de Araújo AF
    Proteins; 2016 Apr; 84(4):515-31. PubMed ID: 26815167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A sequence-compatible amount of native burial information is sufficient for determining the structure of small globular proteins.
    Pereira de Araujo AF; Onuchic JN
    Proc Natl Acad Sci U S A; 2009 Nov; 106(45):19001-4. PubMed ID: 19858496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Information-theoretic analysis and prediction of protein atomic burials: on the search for an informational intermediate between sequence and structure.
    Rocha JR; van der Linden MG; Ferreira DC; Azevêdo PH; Pereira de Araújo AF
    Bioinformatics; 2012 Nov; 28(21):2755-62. PubMed ID: 22923297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Native atomic burials, supplemented by physically motivated hydrogen bond constraints, contain sufficient information to determine the tertiary structure of small globular proteins.
    Pereira de Araújo AF; Gomes AL; Bursztyn AA; Shakhnovich EI
    Proteins; 2008 Feb; 70(3):971-83. PubMed ID: 17847091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constrained Layer Assignment for the Protein Burial Folding Code Accounting for Chain Connectivity.
    van der Linden MG; Ferreira DC; Pereira de Araújo AF
    J Phys Chem B; 2022 Aug; 126(33):6159-6170. PubMed ID: 35952378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Entropy reduction effect imposed by hydrogen bond formation on protein folding cooperativity: evidence from a hydrophobic minimalist model.
    Barbosa MA; Garcia LG; Pereira de Araújo AF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051903. PubMed ID: 16383641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fold recognition and ab initio structure predictions using hidden Markov models and beta-strand pair potentials.
    Hubbard TJ; Park J
    Proteins; 1995 Nov; 23(3):398-402. PubMed ID: 8710832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contact order and ab initio protein structure prediction.
    Bonneau R; Ruczinski I; Tsai J; Baker D
    Protein Sci; 2002 Aug; 11(8):1937-44. PubMed ID: 12142448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ab initio structure prediction for small polypeptides and protein fragments using genetic algorithms.
    Pedersen JT; Moult J
    Proteins; 1995 Nov; 23(3):454-60. PubMed ID: 8710838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GSAFold: a new application of GSA to protein structure prediction.
    Melo MC; Bernardi RC; Fernandes TV; Pascutti PG
    Proteins; 2012 Aug; 80(9):2305-10. PubMed ID: 22622959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the role of the topology in protein folding by computational inverse folding experiments.
    Mucherino A; Costantini S; di Serafino D; D'Apuzzo M; Facchiano A; Colonna G
    Comput Biol Chem; 2008 Aug; 32(4):233-9. PubMed ID: 18479970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical and molecular dynamics studies of buried waters in globular proteins.
    Park S; Saven JG
    Proteins; 2005 Aug; 60(3):450-63. PubMed ID: 15937899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of protein-folding pathways by reduced-space modeling.
    Kmiecik S; Kolinski A
    Proc Natl Acad Sci U S A; 2007 Jul; 104(30):12330-5. PubMed ID: 17636132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced ab initio protein folding simulations in Poisson-Boltzmann molecular dynamics with self-guiding forces.
    Wen EZ; Hsieh MJ; Kollman PA; Luo R
    J Mol Graph Model; 2004 May; 22(5):415-24. PubMed ID: 15099837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast folding and molecular dynamics of a linear hydrophobic β-hairpin.
    Raghavender US
    J Biomol Struct Dyn; 2013 Dec; 31(12):1404-10. PubMed ID: 23145986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mimicking the action of GroEL in molecular dynamics simulations: application to the refinement of protein structures.
    Fan H; Mark AE
    Protein Sci; 2006 Mar; 15(3):441-8. PubMed ID: 16452612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sketching protein aggregation with a physics-based toy model.
    Enciso M; Rey A
    J Chem Phys; 2013 Sep; 139(11):115101. PubMed ID: 24070309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ab initio prediction of the three-dimensional structure of a de novo designed protein: a double-blind case study.
    Klepeis JL; Wei Y; Hecht MH; Floudas CA
    Proteins; 2005 Feb; 58(3):560-70. PubMed ID: 15609306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced protein fold recognition using a structural alphabet.
    Deschavanne P; Tufféry P
    Proteins; 2009 Jul; 76(1):129-37. PubMed ID: 19089985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.