These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 24357004)

  • 1. Chemoenzymatic bio-orthogonal chemistry for site-specific double modification of recombinant thrombomodulin.
    Jiang R; Wang L; Weingart J; Sun XL
    Chembiochem; 2014 Jan; 15(1):42-6. PubMed ID: 24357004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. End-point modification of recombinant thrombomodulin with enhanced stability and anticoagulant activity.
    Liu X; Boron M; Zhao Y; Sun XL
    Eur J Pharm Sci; 2019 Nov; 139():105066. PubMed ID: 31513922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of actively thromboresistant assemblies on sterile blood-contacting surfaces.
    Qu Z; Krishnamurthy V; Haller CA; Dorr BM; Marzec UM; Hurst S; Hinds MT; Hanson SR; Liu DR; Chaikof EL
    Adv Healthc Mater; 2014 Jan; 3(1):30-5. PubMed ID: 23788402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of chain-end clickable recombinant protein and its bio-orthogonal modification.
    Wang L; Jiang R; Wang L; Liu Y; Sun XL
    Bioorg Chem; 2016 Apr; 65():159-66. PubMed ID: 26953841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. End-point immobilization of recombinant thrombomodulin via sortase-mediated ligation.
    Jiang R; Weingart J; Zhang H; Ma Y; Sun XL
    Bioconjug Chem; 2012 Mar; 23(3):643-9. PubMed ID: 22372933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From mechanism to mouse: a tale of two bioorthogonal reactions.
    Sletten EM; Bertozzi CR
    Acc Chem Res; 2011 Sep; 44(9):666-76. PubMed ID: 21838330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Antibodies with C-Terminal Sortase-Mediated Modification for Targeted Nanomedicine.
    Hashad RA; Lange JL; Tan NCW; Alt K; Hagemeyer CE
    Methods Mol Biol; 2019; 2033():67-80. PubMed ID: 31332748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerating Strain-Promoted Azide-Alkyne Cycloaddition Using Micellar Catalysis.
    Anderton GI; Bangerter AS; Davis TC; Feng Z; Furtak AJ; Larsen JO; Scroggin TL; Heemstra JM
    Bioconjug Chem; 2015 Aug; 26(8):1687-91. PubMed ID: 26056848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile Site-Specific Multiconjugation Strategies in Recombinant Proteins Produced in Bacteria.
    Merten H; Schaefer JV; Brandl F; Zangemeister-Wittke U; Plückthun A
    Methods Mol Biol; 2019; 2033():253-273. PubMed ID: 31332759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Legomedicine-A Versatile Chemo-Enzymatic Approach for the Preparation of Targeted Dual-Labeled Llama Antibody-Nanoparticle Conjugates.
    van Lith SA; van Duijnhoven SM; Navis AC; Leenders WP; Dolk E; Wennink JW; van Nostrum CF; van Hest JC
    Bioconjug Chem; 2017 Feb; 28(2):539-548. PubMed ID: 28045502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of copper-catalyzed azide-alkyne cycloaddition for increased in vivo efficacy of interferon β-1b by site-specific PEGylation.
    Nairn NW; Shanebeck KD; Wang A; Graddis TJ; VanBrunt MP; Thornton KC; Grabstein K
    Bioconjug Chem; 2012 Oct; 23(10):2087-97. PubMed ID: 22988919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An azide-modified nucleoside for metabolic labeling of DNA.
    Neef AB; Luedtke NW
    Chembiochem; 2014 Apr; 15(6):789-93. PubMed ID: 24644275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-specific one-pot triple click labeling for DNA and RNA.
    Winz ML; Linder EC; Becker J; Jäschke A
    Chem Commun (Camb); 2018 Oct; 54(83):11781-11784. PubMed ID: 30277234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A strain-promoted alkyne-azide cycloaddition (SPAAC) reaction of a novel EpCAM aptamer-fluorescent conjugate for imaging of cancer cells.
    Subramanian N; Sreemanthula JB; Balaji B; Kanwar JR; Biswas J; Krishnakumar S
    Chem Commun (Camb); 2014 Oct; 50(80):11810-3. PubMed ID: 25005751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-specific conjugation of 8-ethynyl-BODIPY to a protein by [2 + 3] cycloaddition.
    Albrecht M; Lippach A; Exner MP; Jerbi J; Springborg M; Budisa N; Wenz G
    Org Biomol Chem; 2015 Jun; 13(24):6728-36. PubMed ID: 25994282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of Cu (I)-catalyzed alkyne-azide cycloaddition (CuAAC) and strain-promoted alkyne-azide cycloaddition (SPAAC) in O-GlcNAc proteomics.
    Li S; Zhu H; Wang J; Wang X; Li X; Ma C; Wen L; Yu B; Wang Y; Li J; Wang PG
    Electrophoresis; 2016 Jun; 37(11):1431-6. PubMed ID: 26853435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocompatible Azide-Alkyne "Click" Reactions for Surface Decoration of Glyco-Engineered Cells.
    Gutmann M; Memmel E; Braun AC; Seibel J; Meinel L; Lühmann T
    Chembiochem; 2016 May; 17(9):866-75. PubMed ID: 26818821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orthogonal Synthesis of Block Copolymer via Photoinduced CuAAC and Ketene Chemistries.
    Tasdelen MA; Taskin OS; Celik C
    Macromol Rapid Commun; 2016 Mar; 37(6):521-6. PubMed ID: 26847166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast copper-free click DNA ligation by the ring-strain promoted alkyne-azide cycloaddition reaction.
    Shelbourne M; Chen X; Brown T; El-Sagheer AH
    Chem Commun (Camb); 2011 Jun; 47(22):6257-9. PubMed ID: 21547301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-Controlled Chemoenzymatic Immobilization of Proteins towards Engineering of Bioactive Papers.
    Hilberg V; Avrutina O; Ebenig A; Yanakieva D; Meckel T; Biesalski M; Kolmar H
    Chemistry; 2019 Feb; 25(7):1746-1751. PubMed ID: 30395364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.