These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 2435708)

  • 1. Expression of arg genes of Escherichia coli during arginine limitation dependent upon stringent control of translation.
    Williams MG; Rogers P
    J Bacteriol; 1987 Apr; 169(4):1644-50. PubMed ID: 2435708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased transcription rates correlate with increased reversion rates in leuB and argH Escherichia coli auxotrophs.
    Reimers JM; Schmidt KH; Longacre A; Reschke DK; Wright BE
    Microbiology (Reading); 2004 May; 150(Pt 5):1457-1466. PubMed ID: 15133107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual regulation by arginine of the expression of the Escherichia coli argECBH operon.
    Kryzek RA; Rogers P
    J Bacteriol; 1976 Apr; 126(1):348-64. PubMed ID: 770426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the relA gene on derepression of amino acid biosynthetic enzymes in growing Escherichia coli depends on the pathway being derepressed.
    Furano AV; Wittel FP
    J Bacteriol; 1977 Oct; 132(1):352-5. PubMed ID: 334732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stationary phase expression of the arginine biosynthetic operon argCBH in Escherichia coli.
    Weerasinghe JP; Dong T; Schertzberg MR; Kirchhof MG; Sun Y; Schellhorn HE
    BMC Microbiol; 2006 Feb; 6():14. PubMed ID: 16504055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relationship between guanosine tetraphosphate, polysomes and RNA synthesis in amino acid starved Escherichia coli.
    Donini P; Santonastaso V; Roche J; Cozzone AJ
    Mol Biol Rep; 1978 Feb; 4(1):15-9. PubMed ID: 347253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for translational repression of arginine biosynthetic enzymes in Escherichia coli: altered regulation in a streptomycin-resistant mutant.
    Vogel RH; Devine EA; Vogel HJ
    Mol Gen Genet; 1978 Jun; 162(2):157-62. PubMed ID: 353528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation and coupling of argECBH mRNA and enzyme synthesis in cell extracts of Escherichia coli.
    Zidwick MJ; Keller G; Rogers P
    J Bacteriol; 1984 Aug; 159(2):640-6. PubMed ID: 6378885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concerted repression of the synthesis of the arginine biosynthetic enzymes by aminoacids: a comparison between the regulatory mechanisms controlling aminoacid biosyntheses in bacteria and in yeast.
    Messenguy F
    Mol Gen Genet; 1979 Jan; 169(1):85-95. PubMed ID: 375002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Some regulation profiles of ornithine transcarbamylase synthesis in vitro.
    Dohi M; Kikuchi A; Gorini L
    J Biochem; 1978 Dec; 84(6):1401-9. PubMed ID: 216665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of arginine biosynthesis in Saccharomyces cerevisiae: isolation of a cis-dominant, constitutive mutant for ornithine carbamoyltransferase synthesis.
    Messenguy F
    J Bacteriol; 1976 Oct; 128(1):49-55. PubMed ID: 789352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Explanation for different types of regulation of arginine biosynthesis in Escherichia coli B and Escherichia coli K12 caused by a difference between their arginine repressors.
    Tian G; Lim D; Oppenheim JD; Maas WK
    J Mol Biol; 1994 Jan; 235(1):221-30. PubMed ID: 8289243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of arginine on the stability and size of argECBH messenger ribonucleic acid in Escherichia coli.
    Krzyzek RA; Rogers P
    J Bacteriol; 1976 Apr; 126(1):365-76. PubMed ID: 770427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcription of the argF and argI genes of the arginine biosynthetic regulon of Escherichia coli K12, performed in vitro.
    Sens D; Natter W; Garvin RT; James E
    Mol Gen Genet; 1977 Sep; 155(1):7-18. PubMed ID: 337119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of poly(A)+-containing RNA during growth in Escherichia coli relA+ and relA- strains.
    Hanschke R; Hecker M
    J Basic Microbiol; 1986; 26(6):317-22. PubMed ID: 2433424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anabolic ornithine carbamoyltransferase of Pseudomonas aeruginosa: nucleotide sequence and transcriptional control of the argF structural gene.
    Itoh Y; Soldati L; Stalon V; Falmagne P; Terawaki Y; Leisinger T; Haas D
    J Bacteriol; 1988 Jun; 170(6):2725-34. PubMed ID: 3131308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The genetic organization of arginine biosynthesis in Pseudomonas aeruginosa.
    Haas D; Holloway BW; Schamböck A; Leisinger T
    Mol Gen Genet; 1977 Jul; 154(1):7-22. PubMed ID: 408599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Positive control of expression of the argECBH gene cluster in vitro by guanosine 5'-diphosphate 3'-diphosphate.
    Zidwick MJ; Korshus J; Rogers P
    J Bacteriol; 1984 Aug; 159(2):647-51. PubMed ID: 6378886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein synthesis results in guanosine-5'-diphosphate-3'-diphosphate synthesis in Escherichia coli minicells.
    Nöthling R; Reeve JN
    J Bacteriol; 1980 Aug; 143(2):1060-2. PubMed ID: 7009547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alteration of regulation of arginine biosynthesis in Escherichia coli W by mutation to rifampin resistance.
    Wozny ME; Carnevale HN; Jones EE
    Biochim Biophys Acta; 1975 Feb; 383(1):106-16. PubMed ID: 1091297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.