These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 24357252)
1. Solid/Hollow depots for drug delivery, part 1: effect of drug characteristics and polymer molecular weight on the phase-inversion dynamics, depot morphology, and drug release. Liu H; Venkatraman SS J Pharm Sci; 2014 Feb; 103(2):485-95. PubMed ID: 24357252 [TBL] [Abstract][Full Text] [Related]
2. Effect of polymer type on the dynamics of phase inversion and drug release in injectable in situ gelling systems. Liu H; Venkatraman SS J Biomater Sci Polym Ed; 2012; 23(1-4):251-66. PubMed ID: 21244721 [TBL] [Abstract][Full Text] [Related]
3. Drug release from injectable depots: two different in vitro mechanisms. Wang L; Venkatraman S; Kleiner L J Control Release; 2004 Sep; 99(2):207-16. PubMed ID: 15380631 [TBL] [Abstract][Full Text] [Related]
4. In situ forming parenteral depot systems based on poly(ethylene carbonate): effect of polymer molecular weight on model protein release. Chu D; Curdy C; Riebesehl B; Beck-Broichsitter M; Kissel T Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):1245-9. PubMed ID: 23791717 [TBL] [Abstract][Full Text] [Related]
5. A novel in situ forming drug delivery system for controlled parenteral drug delivery. Kranz H; Bodmeier R Int J Pharm; 2007 Mar; 332(1-2):107-14. PubMed ID: 17084049 [TBL] [Abstract][Full Text] [Related]
6. Investigation of Fragment Antibody Stability and Its Release Mechanism from Poly(Lactide-co-Glycolide)-Triacetin Depots for Sustained-Release Applications. Chang DP; Garripelli VK; Rea J; Kelley R; Rajagopal K J Pharm Sci; 2015 Oct; 104(10):3404-17. PubMed ID: 26099467 [TBL] [Abstract][Full Text] [Related]
7. On the design of in situ forming biodegradable parenteral depot systems based on insulin loaded dialkylaminoalkyl-amine-poly(vinyl alcohol)-g-poly(lactide-co-glycolide) nanoparticles. Packhaeuser CB; Kissel T J Control Release; 2007 Nov; 123(2):131-40. PubMed ID: 17854938 [TBL] [Abstract][Full Text] [Related]
8. Sustained release of human growth hormone from PLGA solution depots. Brodbeck KJ; Pushpala S; McHugh AJ Pharm Res; 1999 Dec; 16(12):1825-9. PubMed ID: 10644069 [TBL] [Abstract][Full Text] [Related]
9. Controlled release from bioerodible polymers: effect of drug type and polymer composition. Frank A; Rath SK; Venkatraman SS J Control Release; 2005 Feb; 102(2):333-44. PubMed ID: 15653155 [TBL] [Abstract][Full Text] [Related]
10. Versatility of biodegradable poly(D,L-lactic-co-glycolic acid) microspheres for plasmid DNA delivery. Díez S; Tros de Ilarduya C Eur J Pharm Biopharm; 2006 Jun; 63(2):188-97. PubMed ID: 16697172 [TBL] [Abstract][Full Text] [Related]
11. Enzyme-responsive surface erosion of poly(ethylene carbonate) for controlled drug release. Chu D; Curdy C; Riebesehl B; Zhang Y; Beck-Broichsitter M; Kissel T Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):1232-7. PubMed ID: 23639738 [TBL] [Abstract][Full Text] [Related]
12. Development of a novel formulation containing poly(d,l-lactide-co-glycolide) microspheres dispersed in PLGA-PEG-PLGA gel for sustained delivery of ganciclovir. Duvvuri S; Janoria KG; Mitra AK J Control Release; 2005 Nov; 108(2-3):282-93. PubMed ID: 16229919 [TBL] [Abstract][Full Text] [Related]
13. Effects of process and formulation parameters on characteristics and internal morphology of poly(d,l-lactide-co-glycolide) microspheres formed by the solvent evaporation method. Mao S; Shi Y; Li L; Xu J; Schaper A; Kissel T Eur J Pharm Biopharm; 2008 Feb; 68(2):214-23. PubMed ID: 17651954 [TBL] [Abstract][Full Text] [Related]
14. Effect of polymer molecular weight and of polymer blends on the properties of rapidly gelling nasal inserts. Bertram U; Bodmeier R Drug Dev Ind Pharm; 2012 Jun; 38(6):659-69. PubMed ID: 22537309 [TBL] [Abstract][Full Text] [Related]
15. Nanoscale surface characterization and miscibility study of a spray-dried injectable polymeric matrix consisting of poly(lactic-co-glycolic acid) and polyvinylpyrrolidone. Meeus J; Chen X; Scurr DJ; Ciarnelli V; Amssoms K; Roberts CJ; Davies MC; van Den Mooter G J Pharm Sci; 2012 Sep; 101(9):3473-85. PubMed ID: 22447580 [TBL] [Abstract][Full Text] [Related]
16. Noninvasive characterization of the effect of varying PLGA molecular weight blends on in situ forming implant behavior using ultrasound imaging. Solorio L; Olear AM; Hamilton JI; Patel RB; Beiswenger AC; Wallace JE; Zhou H; Exner AA Theranostics; 2012; 2(11):1064-77. PubMed ID: 23227123 [TBL] [Abstract][Full Text] [Related]
17. Structure formation and characterization of injectable drug loaded biodegradable devices: in situ implants versus in situ microparticles. Kranz H; Bodmeier R Eur J Pharm Sci; 2008 Jul; 34(2-3):164-72. PubMed ID: 18501569 [TBL] [Abstract][Full Text] [Related]
18. Incorporation and in vitro release of doxorubicin in thermally sensitive micelles made from poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(D,L-lactide-co-glycolide) with varying compositions. Liu SQ; Tong YW; Yang YY Biomaterials; 2005 Aug; 26(24):5064-74. PubMed ID: 15769542 [TBL] [Abstract][Full Text] [Related]
19. Changes in morphology of in situ forming PLGA implant prepared by different polymer molecular weight and its effect on release behavior. Astaneh R; Erfan M; Moghimi H; Mobedi H J Pharm Sci; 2009 Jan; 98(1):135-45. PubMed ID: 18493999 [TBL] [Abstract][Full Text] [Related]
20. Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content. Budhian A; Siegel SJ; Winey KI Int J Pharm; 2007 May; 336(2):367-75. PubMed ID: 17207944 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]