BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 24357252)

  • 1. Solid/Hollow depots for drug delivery, part 1: effect of drug characteristics and polymer molecular weight on the phase-inversion dynamics, depot morphology, and drug release.
    Liu H; Venkatraman SS
    J Pharm Sci; 2014 Feb; 103(2):485-95. PubMed ID: 24357252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of polymer type on the dynamics of phase inversion and drug release in injectable in situ gelling systems.
    Liu H; Venkatraman SS
    J Biomater Sci Polym Ed; 2012; 23(1-4):251-66. PubMed ID: 21244721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drug release from injectable depots: two different in vitro mechanisms.
    Wang L; Venkatraman S; Kleiner L
    J Control Release; 2004 Sep; 99(2):207-16. PubMed ID: 15380631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ forming parenteral depot systems based on poly(ethylene carbonate): effect of polymer molecular weight on model protein release.
    Chu D; Curdy C; Riebesehl B; Beck-Broichsitter M; Kissel T
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):1245-9. PubMed ID: 23791717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel in situ forming drug delivery system for controlled parenteral drug delivery.
    Kranz H; Bodmeier R
    Int J Pharm; 2007 Mar; 332(1-2):107-14. PubMed ID: 17084049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of Fragment Antibody Stability and Its Release Mechanism from Poly(Lactide-co-Glycolide)-Triacetin Depots for Sustained-Release Applications.
    Chang DP; Garripelli VK; Rea J; Kelley R; Rajagopal K
    J Pharm Sci; 2015 Oct; 104(10):3404-17. PubMed ID: 26099467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the design of in situ forming biodegradable parenteral depot systems based on insulin loaded dialkylaminoalkyl-amine-poly(vinyl alcohol)-g-poly(lactide-co-glycolide) nanoparticles.
    Packhaeuser CB; Kissel T
    J Control Release; 2007 Nov; 123(2):131-40. PubMed ID: 17854938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustained release of human growth hormone from PLGA solution depots.
    Brodbeck KJ; Pushpala S; McHugh AJ
    Pharm Res; 1999 Dec; 16(12):1825-9. PubMed ID: 10644069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled release from bioerodible polymers: effect of drug type and polymer composition.
    Frank A; Rath SK; Venkatraman SS
    J Control Release; 2005 Feb; 102(2):333-44. PubMed ID: 15653155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Versatility of biodegradable poly(D,L-lactic-co-glycolic acid) microspheres for plasmid DNA delivery.
    Díez S; Tros de Ilarduya C
    Eur J Pharm Biopharm; 2006 Jun; 63(2):188-97. PubMed ID: 16697172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme-responsive surface erosion of poly(ethylene carbonate) for controlled drug release.
    Chu D; Curdy C; Riebesehl B; Zhang Y; Beck-Broichsitter M; Kissel T
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):1232-7. PubMed ID: 23639738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a novel formulation containing poly(d,l-lactide-co-glycolide) microspheres dispersed in PLGA-PEG-PLGA gel for sustained delivery of ganciclovir.
    Duvvuri S; Janoria KG; Mitra AK
    J Control Release; 2005 Nov; 108(2-3):282-93. PubMed ID: 16229919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of process and formulation parameters on characteristics and internal morphology of poly(d,l-lactide-co-glycolide) microspheres formed by the solvent evaporation method.
    Mao S; Shi Y; Li L; Xu J; Schaper A; Kissel T
    Eur J Pharm Biopharm; 2008 Feb; 68(2):214-23. PubMed ID: 17651954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of polymer molecular weight and of polymer blends on the properties of rapidly gelling nasal inserts.
    Bertram U; Bodmeier R
    Drug Dev Ind Pharm; 2012 Jun; 38(6):659-69. PubMed ID: 22537309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale surface characterization and miscibility study of a spray-dried injectable polymeric matrix consisting of poly(lactic-co-glycolic acid) and polyvinylpyrrolidone.
    Meeus J; Chen X; Scurr DJ; Ciarnelli V; Amssoms K; Roberts CJ; Davies MC; van Den Mooter G
    J Pharm Sci; 2012 Sep; 101(9):3473-85. PubMed ID: 22447580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noninvasive characterization of the effect of varying PLGA molecular weight blends on in situ forming implant behavior using ultrasound imaging.
    Solorio L; Olear AM; Hamilton JI; Patel RB; Beiswenger AC; Wallace JE; Zhou H; Exner AA
    Theranostics; 2012; 2(11):1064-77. PubMed ID: 23227123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure formation and characterization of injectable drug loaded biodegradable devices: in situ implants versus in situ microparticles.
    Kranz H; Bodmeier R
    Eur J Pharm Sci; 2008 Jul; 34(2-3):164-72. PubMed ID: 18501569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporation and in vitro release of doxorubicin in thermally sensitive micelles made from poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(D,L-lactide-co-glycolide) with varying compositions.
    Liu SQ; Tong YW; Yang YY
    Biomaterials; 2005 Aug; 26(24):5064-74. PubMed ID: 15769542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in morphology of in situ forming PLGA implant prepared by different polymer molecular weight and its effect on release behavior.
    Astaneh R; Erfan M; Moghimi H; Mobedi H
    J Pharm Sci; 2009 Jan; 98(1):135-45. PubMed ID: 18493999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content.
    Budhian A; Siegel SJ; Winey KI
    Int J Pharm; 2007 May; 336(2):367-75. PubMed ID: 17207944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.