These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 24357461)
81. Blockade of HMGB1 Attenuates Diabetic Nephropathy in Mice. Chen X; Ma J; Kwan T; Stribos EGD; Messchendorp AL; Loh YW; Wang X; Paul M; Cunningham EC; Habib M; Alexander IE; Sharland AF; Chadban SJ; Wu H Sci Rep; 2018 May; 8(1):8319. PubMed ID: 29844451 [TBL] [Abstract][Full Text] [Related]
82. Transcriptome assessment reveals a dominant role for TLR4 in the activation of human monocytes by the alarmin MRP8. Fassl SK; Austermann J; Papantonopoulou O; Riemenschneider M; Xue J; Bertheloot D; Freise N; Spiekermann C; Witten A; Viemann D; Kirschnek S; Stoll M; Latz E; Schultze JL; Roth J; Vogl T J Immunol; 2015 Jan; 194(2):575-83. PubMed ID: 25505274 [TBL] [Abstract][Full Text] [Related]
83. NOD2 promotes renal injury by exacerbating inflammation and podocyte insulin resistance in diabetic nephropathy. Du P; Fan B; Han H; Zhen J; Shang J; Wang X; Li X; Shi W; Tang W; Bao C; Wang Z; Zhang Y; Zhang B; Wei X; Yi F Kidney Int; 2013 Aug; 84(2):265-76. PubMed ID: 23594678 [TBL] [Abstract][Full Text] [Related]
84. MIP-1α Expression Induced by Co-Stimulation of Human Monocytic Cells with Palmitate and TNF-α Involves the TLR4-IRF3 Pathway and Is Amplified by Oxidative Stress. Sindhu S; Akhter N; Wilson A; Thomas R; Arefanian H; Al Madhoun A; Al-Mulla F; Ahmad R Cells; 2020 Jul; 9(8):. PubMed ID: 32751118 [TBL] [Abstract][Full Text] [Related]
85. Loss of Toll-Like Receptor 4 Function Partially Protects against Peripheral and Cardiac Glucose Metabolic Derangements During a Long-Term High-Fat Diet. Jackson EE; Rendina-Ruedy E; Smith BJ; Lacombe VA PLoS One; 2015; 10(11):e0142077. PubMed ID: 26539824 [TBL] [Abstract][Full Text] [Related]
86. Podocyte-specific chemokine (C-C motif) receptor 2 overexpression mediates diabetic renal injury in mice. You H; Gao T; Raup-Konsavage WM; Cooper TK; Bronson SK; Reeves WB; Awad AS Kidney Int; 2017 Mar; 91(3):671-682. PubMed ID: 27914709 [TBL] [Abstract][Full Text] [Related]
87. TLR4 and RAGE conversely mediate pro-inflammatory S100A8/9-mediated inhibition of proliferation-linked signaling in myeloproliferative neoplasms. Kovačić M; Mitrović-Ajtić O; Beleslin-Čokić B; Djikić D; Subotički T; Diklić M; Leković D; Gotić M; Mossuz P; Čokić VP Cell Oncol (Dordr); 2018 Oct; 41(5):541-553. PubMed ID: 29946821 [TBL] [Abstract][Full Text] [Related]
88. Cross-talk between angiotensin-II and toll-like receptor 4 triggers a synergetic inflammatory response in rat mesangial cells under high glucose conditions. Lv J; Chen Q; Shao Y; Chen Y; Shi J Biochem Biophys Res Commun; 2015 Apr; 459(2):264-269. PubMed ID: 25732086 [TBL] [Abstract][Full Text] [Related]
89. Hepcidin-ferroportin axis controls toll-like receptor 4 dependent macrophage inflammatory responses in human atherosclerotic plaques. Habib A; Polavarapu R; Karmali V; Guo L; Van Dam R; Cheng Q; Akahori H; Saeed O; Nakano M; Pachura K; Hong CC; Shin E; Kolodgie F; Virmani R; Finn AV Atherosclerosis; 2015 Aug; 241(2):692-700. PubMed ID: 26125411 [TBL] [Abstract][Full Text] [Related]
90. Upregulation of microRNA-424 relieved diabetic nephropathy by targeting Rictor through mTOR Complex2/Protein Kinase B signaling. Wang G; Yan Y; Xu N; Hui Y; Yin D J Cell Physiol; 2019 Jul; 234(7):11646-11653. PubMed ID: 30637733 [TBL] [Abstract][Full Text] [Related]
91. The role of Toll-like receptor proteins (TLR) 2 and 4 in mediating inflammation in proximal tubules. Mudaliar H; Pollock C; Komala MG; Chadban S; Wu H; Panchapakesan U Am J Physiol Renal Physiol; 2013 Jul; 305(2):F143-54. PubMed ID: 23576640 [TBL] [Abstract][Full Text] [Related]
92. Circulating inflammatory factors and risk causality associated with type 2 diabetic nephropathy: A Mendelian randomization and bioinformatics study. Hu J; Dong X; Yao X; Yi T Medicine (Baltimore); 2024 Jul; 103(28):e38864. PubMed ID: 38996161 [TBL] [Abstract][Full Text] [Related]
93. Meta-Analysis and Bioinformatics Detection of Susceptibility Genes in Diabetic Nephropathy. Tziastoudi M; Cholevas C; Theoharides TC; Stefanidis I Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008447 [TBL] [Abstract][Full Text] [Related]
94. The crosstalk among TLR2, TLR4 and pathogenic pathways; a treasure trove for treatment of diabetic neuropathy. Aghamiri SH; Komlakh K; Ghaffari M Inflammopharmacology; 2022 Feb; 30(1):51-60. PubMed ID: 35020096 [TBL] [Abstract][Full Text] [Related]
96. Natural compounds improve diabetic nephropathy by regulating the TLR4 signaling pathway. Wu J; Li K; Zhou M; Gao H; Wang W; Xiao W J Pharm Anal; 2024 Aug; 14(8):100946. PubMed ID: 39258172 [TBL] [Abstract][Full Text] [Related]
97. TLR4-dependent metabolic changes are associated with cognitive impairment in an animal model of type 1 diabetes. Kawamoto EM; Cutler RG; Rothman SM; Mattson MP; Camandola S Biochem Biophys Res Commun; 2014 Jan; 443(2):731-7. PubMed ID: 24342620 [TBL] [Abstract][Full Text] [Related]
98. Lipids: A Major Culprit in Diabetic Nephropathy. Beniwal A; Jain JC; Jain A Curr Diabetes Rev; 2024; 20(8):60-69. PubMed ID: 38018185 [TBL] [Abstract][Full Text] [Related]
99. The emerging role of dyslipidemia in diabetic microvascular complications. Savelieff MG; Callaghan BC; Feldman EL Curr Opin Endocrinol Diabetes Obes; 2020 Apr; 27(2):115-123. PubMed ID: 32073426 [TBL] [Abstract][Full Text] [Related]
100. Molecular and cellular regulation of toll-like receptor-4 activity induced by lipopolysaccharide ligands. Liaunardy-Jopeace A; Gay NJ Front Immunol; 2014; 5():473. PubMed ID: 25339952 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]