These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 24357913)

  • 1. A 48-pixel array of Single Photon Avalanche Diodes for multispot Single Molecule analysis.
    Gulinatti A; Rech I; Maccagnani P; Ghioni M
    Proc SPIE Int Soc Opt Eng; 2013 Feb; 8631():86311D-. PubMed ID: 24357913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gigacount/second Photon Detection Module Based on an 8 × 8 Single-Photon Avalanche Diode Array.
    Ceccarelli F; Gulinatti A; Labanca I; Rech I; Ghioni M
    IEEE Photonics Technol Lett; 2016 May; 28(9):1002-1005. PubMed ID: 27175050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red-Enhanced Photon Detection Module Featuring a 32 × 1 Single-Photon Avalanche Diode Array.
    Ceccarelli F; Gulinatti A; Labanca I; Ghioni M; Rech I
    IEEE Photonics Technol Lett; 2018 Mar; 30(6):557-560. PubMed ID: 29581700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Custom single-photon avalanche diode with integrated front-end for parallel photon timing applications.
    Cammi C; Panzeri F; Gulinatti A; Rech I; Ghioni M
    Rev Sci Instrum; 2012 Mar; 83(3):033104. PubMed ID: 22462903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New silicon technologies enable high-performance arrays of Single Photon Avalanche Diodes.
    Gulinatti A; Rech I; Maccagnani P; Cova S; Ghioni M
    Proc SPIE Int Soc Opt Eng; 2013 May; 8727():87270M-. PubMed ID: 24353395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy.
    Michalet X; Ingargiola A; Colyer RA; Scalia G; Weiss S; Maccagnani P; Gulinatti A; Rech I; Ghioni M
    IEEE J Sel Top Quantum Electron; 2014 Nov; 20(6):38044201-380442020. PubMed ID: 25309114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and characterization of an 8×8 SPAD-array module for gigacount per second applications.
    Ceccarelli F; Gulinatti A; Labanca I; Rech I; Ghioni M
    Proc SPIE Int Soc Opt Eng; 2017 Apr; 10229():. PubMed ID: 28781415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 8-spot smFRET analysis using two 8-pixel SPAD arrays.
    Ingargiola A; Panzeri F; Sarkosh N; Gulinatti A; Rech I; Ghioni M; Weiss S; Michalet X
    Proc SPIE Int Soc Opt Eng; 2013 Feb; 8590():. PubMed ID: 24386541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm.
    Scarcella C; Tosi A; Villa F; Tisa S; Zappa F
    Rev Sci Instrum; 2013 Dec; 84(12):123112. PubMed ID: 24387425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Custom-Technology Single-Photon Avalanche Diode Linear Detector Array for Underwater Depth Imaging.
    Maccarone A; Acconcia G; Steinlehner U; Labanca I; Newborough D; Rech I; Buller GS
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silicon technologies for arrays of Single Photon Avalanche Diodes.
    Gulinatti A; Ceccarelli F; Rech I; Ghioni M
    Proc SPIE Int Soc Opt Eng; 2016 Apr; 9858():. PubMed ID: 27761058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, characterization and analysis of a 0.35 μm CMOS SPAD.
    Jradi K; Pellion D; Ginhac D
    Sensors (Basel); 2014 Dec; 14(12):22773-84. PubMed ID: 25470491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling for Single-Photon Avalanche Diodes: State-of-the-Art and Research Challenges.
    Qian X; Jiang W; Elsharabasy A; Deen MJ
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical crosstalk in SPAD arrays for high-throughput single-molecule fluorescence spectroscopy.
    Ingargiola A; Segal M; Gulinatti A; Rech I; Labanca I; Maccagnani P; Ghioni M; Weiss S; Michalet X
    Nucl Instrum Methods Phys Res A; 2018 Dec; 9(12):255-258. PubMed ID: 31223178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 3.06 μm Single-Photon Avalanche Diode Pixel with Embedded Metal Contact and Power Grid on Deep Trench Pixel Isolation for High-Resolution Photon Counting.
    Ogi J; Sano F; Nakata T; Kubo Y; Onishi W; Koswaththage C; Mochizuki T; Tashiro Y; Hizu K; Takatsuka T; Watanabe I; Koga F; Hirano T; Oike Y
    Sensors (Basel); 2023 Nov; 23(21):. PubMed ID: 37960605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-voltage integrated active quenching circuit for single photon count rate up to 80 Mcounts/s.
    Acconcia G; Rech I; Gulinatti A; Ghioni M
    Opt Express; 2016 Aug; 24(16):17819-31. PubMed ID: 27505749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-Chip Compressive Sensing with a Single-Photon Avalanche Diode Array.
    Qiu C; Wang P; Kong X; Yan F; Mao C; Yue T; Hu X
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-molecule FRET experiments with a red-enhanced custom technology SPAD.
    Panzeri F; Ingargiola A; Lin RR; Sarkhosh N; Gulinatti A; Rech I; Ghioni M; Cova S; Weiss S; Michalet X
    Proc SPIE Int Soc Opt Eng; 2013 Feb; 8590():. PubMed ID: 24371508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Note: Fully integrated active quenching circuit achieving 100 MHz count rate with custom technology single photon avalanche diodes.
    Acconcia G; Labanca I; Rech I; Gulinatti A; Ghioni M
    Rev Sci Instrum; 2017 Feb; 88(2):026103. PubMed ID: 28249471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards a Multi-Pixel Photon-to-Digital Converter for Time-Bin Quantum Key Distribution.
    Carrier S; Labrecque-Dias M; Tannous R; Gendron P; Nolet F; Roy N; Rossignol T; Vachon F; Parent S; Jennewein T; Charlebois S; Pratte JF
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.