These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 24357975)

  • 1. Variation in resistive force selection during brief high intensity cycle ergometry: implications for power assessment and production in elite karate practitioners.
    Baker JS; Davies B
    J Sports Sci Med; 2006; 5(CSSI):42-6. PubMed ID: 24357975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationship between total-body mass, fat-free mass and cycle ergometry power components during 20 seconds of maximal exercise.
    Baker JS; Bailey DM; Davies B
    J Sci Med Sport; 2001 Mar; 4(1):1-9. PubMed ID: 11339485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catecholamine responses to high intensity cycle ergometer exercise: body mass or body composition?
    Baker JS; Bailey DM; Dutton J; Davies B
    J Physiol Biochem; 2003 Jun; 59(2):77-83. PubMed ID: 14649873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic consequences of resistive force selection during cycle ergometry exercise.
    Baker JS; Graham MR; Davies B
    Res Sports Med; 2007; 15(1):1-11. PubMed ID: 17365948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic implications of resistive force selection for oxidative stress and markers of muscle damage during 30 s of high-intensity exercise.
    Baker JS; Bailey DM; Hullin D; Young I; Davies B
    Eur J Appl Physiol; 2004 Jul; 92(3):321-7. PubMed ID: 15098126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brief high-intensity exercise and resistive force selection in overweight and obese subjects: body mass or body composition?
    Baker JS; Davies B
    Res Sports Med; 2006; 14(2):97-106. PubMed ID: 16869135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-intensity intermittent cycle ergometer exercise: effect of recovery duration and resistive force selection on performance.
    Baker JS; Van Praagh E; Gelsei M; Thomas M; Davies B
    Res Sports Med; 2007; 15(2):77-92. PubMed ID: 17578748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasma volume response to 30-s cycle ergometry: influence on lipid and lipoprotein.
    Retallick CJ; Baker JS; Williams SR; Whitcombe D; Davies B
    Med Sci Sports Exerc; 2007 Sep; 39(9):1579-86. PubMed ID: 17805091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Power output of legs during high intensity cycle ergometry: influence of hand grip.
    Baker J; Gal J; Davies B; Bailey D; Morgan R
    J Sci Med Sport; 2001 Mar; 4(1):10-8. PubMed ID: 11339486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of force-velocity cycle ergometer test and vertical jump tests in the functional assessment of karate competitor.
    Ravier G; Grappe F; Rouillon JD
    J Sports Med Phys Fitness; 2004 Dec; 44(4):349-55. PubMed ID: 15758845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal Resistive Forces for Maximizing the Reliability of Leg Muscles' Capacities Tested on a Cycle Ergometer.
    García-Ramos A; Torrejón A; Morales-Artacho AJ; Pérez-Castilla A; Jaric S
    J Appl Biomech; 2018 Feb; 34(1):47-52. PubMed ID: 28952867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical and physiological profile of elite karate athletes.
    Chaabène H; Hachana Y; Franchini E; Mkaouer B; Chamari K
    Sports Med; 2012 Oct; 42(10):829-43. PubMed ID: 22901041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimized versus corrected peak power during friction-braked cycle ergometry in males and females.
    James DV; Wood DM; Maberly TC; De Ste Croix M
    J Sports Sci; 2007 Jun; 25(8):859-67. PubMed ID: 17474039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Propulsion technique and anaerobic work capacity in elite wheelchair athletes: cross-sectional analysis.
    van der Woude LH; Bakker WH; Elkhuizen JW; Veeger HE; Gwinn T
    Am J Phys Med Rehabil; 1998; 77(3):222-34. PubMed ID: 9635557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reproducibility of estimated optimal peak output using a force-velocity test on a cycle ergometer.
    Coelho-E-Silva MJ; Rebelo-Gonçalves R; Martinho D; Ahmed A; Luz LGO; Duarte JP; Severino V; Baptista RC; Valente-Dos-Santos J; Vaz V; Gonçalves RS; Tessitore A; Figueiredo AJ
    PLoS One; 2018; 13(2):e0193234. PubMed ID: 29474490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of differing pedalling speeds on the power-duration relationship of high intensity cycle ergometry.
    McNaughton L; Thomas D
    Int J Sports Med; 1996 May; 17(4):287-92. PubMed ID: 8814511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of exercise intensity on joint power and dynamics in ergometer double-poling performed by cross-country skiers.
    Danielsen J; Sandbakk Ø; McGhie D; Ettema G
    Hum Mov Sci; 2018 Feb; 57():83-93. PubMed ID: 29179043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimized and corrected peak power output during friction-braked cycle ergometry.
    Winter EM; Brown D; Roberts NK; Brookes FB; Swaine IL
    J Sports Sci; 1996 Dec; 14(6):513-21. PubMed ID: 8981290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of aerobic work and power on a rope-braked cycle ergometer by direct measurement.
    Gordon RS; Franklin KL; Baker JS; Davies B
    Appl Physiol Nutr Metab; 2006 Aug; 31(4):392-7. PubMed ID: 16900228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High intensity exercise assessment: relationships between laboratory and field measures of performance.
    Baker JS; Davies B
    J Sci Med Sport; 2002 Dec; 5(4):341-7. PubMed ID: 12585617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.