These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 2435862)

  • 1. Simultaneous optical recording of activity from many neurons during feeding in Navanax.
    London JA; Zecević D; Cohen LB
    J Neurosci; 1987 Mar; 7(3):649-61. PubMed ID: 2435862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous monitoring of activity of many neurons from invertebrate ganglia using a multielement detecting system.
    London JA; Zećevic D; Cohen LB
    Soc Gen Physiol Ser; 1986; 40():115-31. PubMed ID: 3715522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CCK-8 inhibits feeding-specific neurons in Navanax, an opisthobranch mollusc.
    Zimering MB; Madsen AJ; Elde RP
    Peptides; 1988; 9(1):133-9. PubMed ID: 3362741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical monitoring of activity of many neurons in invertebrate ganglia during behaviors.
    Wu JY; London JA; Zecevic D; Höpp HP; Cohen LB; Xiao C
    Experientia; 1988 May; 44(5):369-76. PubMed ID: 3286282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peripheral fields and branching patterns of buccal mechanosensory neurons in the opisthobranch mollusc, Navanax inermis.
    Spray DC; Spira ME; Bennett MV
    Brain Res; 1980 Jan; 182(2):253-70. PubMed ID: 7357387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patterns of neural and behavioral activity in freely-moving Navanax inermis (Mollusca; Opisthobranchia).
    Leonard JL
    Acta Biol Hung; 1992; 43(1-4):329-42. PubMed ID: 1299122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gap junctions and septate-like junctions between neurons of the opisthobranch mollusc Navanax inermis.
    Hall DH; Spray DC; Bennett MV
    J Neurocytol; 1983 Oct; 12(5):831-46. PubMed ID: 6644357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic connections of buccal mechanosensory neurons in the opisthobranch mollusc, Navanax inermis.
    Spray DC; Spira ME; Bennett MV
    Brain Res; 1980 Jan; 182(2):271-86. PubMed ID: 6244041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical transmission among neurons in the buccal ganglion of a mollusc, Navanax inermis.
    Levitan H; Tauc L; Segundo JP
    J Gen Physiol; 1970 Apr; 55(4):484-96. PubMed ID: 4314176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical measurement of action potential activity in invertebrate ganglia.
    Cohen L; Höpp HP; Wu JY; Xiao C; London J
    Annu Rev Physiol; 1989; 51():527-41. PubMed ID: 2653195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasticity of feeding behavior in the opisthobranch mollusc Navanax.
    Susswein AJ; Bennett MV
    J Neurobiol; 1979 Nov; 10(6):521-34. PubMed ID: 521812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Neuronal mechanisms of the generation of the feeding rhythm in the buccal ganglia of the pteropod mollusk].
    Arshavskiĭ IuI; Deliagina TG; Meĭzerov ES; Orlovskiĭ GN; Panchin IuV
    Neirofiziologiia; 1988; 20(2):258-62. PubMed ID: 3398976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharyngeal movements during feeding sequences of Navanax inermis (Gastropoda: Opisthobranchia) in successive stages of dissection.
    Susswein AJ; Achituv Y; Cappell MS; Bennett MV
    J Exp Biol; 1987 Mar; 128():323-33. PubMed ID: 3559467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prey capture phase of feeding behavior in the pteropod mollusc Clione limacina: neuronal mechanisms.
    Norekian TP
    J Comp Physiol A; 1995; 177(1):41-53. PubMed ID: 7623295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterned activity of the buccal ganglion of the nudibranch mollusc Archidoris pseudoargus.
    Rose RM
    J Exp Biol; 1971 Aug; 55(1):185-204. PubMed ID: 4331208
    [No Abstract]   [Full Text] [Related]  

  • 16. Polyphasic synaptic potentials in the ganglion of the mollusc, Navanax.
    Levitan H; Tauc L
    J Physiol; 1975 Jun; 248(1):35-44. PubMed ID: 1151820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological basis of feeding behavior in Tritonia diomedea. II. Neuronal mechanisms.
    Willows AO
    J Neurophysiol; 1980 Nov; 44(5):849-61. PubMed ID: 6255109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the feeding motor pattern in the pond snail, Lymnaea stagnalis: photoinactivation of axonally stained pattern-generating interneurons.
    Kemenes G; Elliott CJ
    J Neurosci; 1994 Jan; 14(1):153-66. PubMed ID: 8283231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebral neurons underlying prey capture movements in the pteropod mollusc, Clione limacina. I. Physiology, morphology.
    Norekian TP; Satterlie RA
    J Comp Physiol A; 1993 Mar; 172(2):153-69. PubMed ID: 8386765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of cerebral-to-buccal interneurons implicated in the control of motor programs associated with feeding in Aplysia.
    Rosen SC; Teyke T; Miller MW; Weiss KR; Kupfermann I
    J Neurosci; 1991 Nov; 11(11):3630-55. PubMed ID: 1941100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.