BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 24358891)

  • 1. Reprogramming diminishes retention of Mycobacterium leprae in Schwann cells and elevates bacterial transfer property to fibroblasts.
    Masaki T; McGlinchey A; Tomlinson SR; Qu J; Rambukkana A
    F1000Res; 2013; 2():198. PubMed ID: 24358891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Innate immune response precedes Mycobacterium leprae-induced reprogramming of adult Schwann cells.
    Masaki T; McGlinchey A; Cholewa-Waclaw J; Qu J; Tomlinson SR; Rambukkana A
    Cell Reprogram; 2014 Feb; 16(1):9-17. PubMed ID: 24279882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reprogramming adult Schwann cells to stem cell-like cells by leprosy bacilli promotes dissemination of infection.
    Masaki T; Qu J; Cholewa-Waclaw J; Burr K; Raaum R; Rambukkana A
    Cell; 2013 Jan; 152(1-2):51-67. PubMed ID: 23332746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial-induced cell reprogramming to stem cell-like cells: new premise in host-pathogen interactions.
    Hess S; Rambukkana A
    Curr Opin Microbiol; 2015 Feb; 23():179-88. PubMed ID: 25541240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Phenotypic plasticity of neural crest-derived melanocytes and Schwann cells].
    Dupin E
    Biol Aujourdhui; 2011; 205(1):53-61. PubMed ID: 21501576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Usage of signaling in neurodegeneration and regeneration of peripheral nerves by leprosy bacteria.
    Rambukkana A
    Prog Neurobiol; 2010 Jun; 91(2):102-7. PubMed ID: 20005916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of primary infection of Schwann cells in the aetiology of infective inflammatory neuropathies.
    Neal JW; Gasque P
    J Infect; 2016 Nov; 73(5):402-418. PubMed ID: 27546064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interleukin-4 regulates the expression of CD209 and subsequent uptake of Mycobacterium leprae by Schwann cells in human leprosy.
    Teles RM; Krutzik SR; Ochoa MT; Oliveira RB; Sarno EN; Modlin RL
    Infect Immun; 2010 Nov; 78(11):4634-43. PubMed ID: 20713631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mycobacterium leprae-specific, HLA class II-restricted killing of human Schwann cells by CD4+ Th1 cells: a novel immunopathogenic mechanism of nerve damage in leprosy.
    Spierings E; de Boer T; Wieles B; Adams LB; Marani E; Ottenhoff TH
    J Immunol; 2001 May; 166(10):5883-8. PubMed ID: 11342602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of major histocompatibility complex class I and class II antigens in human Schwann cell cultures and effects of infection with Mycobacterium leprae.
    Samuel NM; Mirsky R; Grange JM; Jessen KR
    Clin Exp Immunol; 1987 Jun; 68(3):500-9. PubMed ID: 3115648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel mechanisms in the immunopathogenesis of leprosy nerve damage: the role of Schwann cells, T cells and Mycobacterium leprae.
    Spierings E; De Boer T; Zulianello L; Ottenhoff TH
    Immunol Cell Biol; 2000 Aug; 78(4):349-55. PubMed ID: 10947859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The formation of lipid droplets favors intracellular Mycobacterium leprae survival in SW-10, non-myelinating Schwann cells.
    Jin SH; An SK; Lee SB
    PLoS Negl Trop Dis; 2017 Jun; 11(6):e0005687. PubMed ID: 28636650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. THE BEHAVIOR OF BACILLUS LEPRAE IN COLD-BLOODED ANIMALS.
    Couret M
    J Exp Med; 1911 May; 13(5):576-89. PubMed ID: 19867440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 21-kDa surface protein of Mycobacterium leprae binds peripheral nerve laminin-2 and mediates Schwann cell invasion.
    Shimoji Y; Ng V; Matsumura K; Fischetti VA; Rambukkana A
    Proc Natl Acad Sci U S A; 1999 Aug; 96(17):9857-62. PubMed ID: 10449784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of a derivative of serotonin (deoxyfructoserotonin) and other antileprosy drugs on attachment and uptake of Mycobacterium leprae by Schwann cells in vitro.
    Choudhury A; Mistry NF; Antia NH
    Antimicrob Agents Chemother; 1989 Jun; 33(6):866-70. PubMed ID: 2669627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating the potential of poly(beta-amino ester) nanoparticles for reprogramming human fibroblasts to become induced pluripotent stem cells.
    Bhise NS; Wahlin KJ; Zack DJ; Green JJ
    Int J Nanomedicine; 2013; 8():4641-58. PubMed ID: 24348039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Mycobacterium leprae gene encoding a fibronectin binding protein is used for efficient invasion of epithelial cells and Schwann cells.
    Schorey JS; Li Q; McCourt DW; Bong-Mastek M; Clark-Curtiss JE; Ratliff TL; Brown EJ
    Infect Immun; 1995 Jul; 63(7):2652-7. PubMed ID: 7790081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lack of Mycobacterium leprae-specific uptake in Schwann cells.
    Band AH; Bhattacharya A; Talwar GP
    Int J Lepr Other Mycobact Dis; 1986 Mar; 54(1):71-8. PubMed ID: 3086468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effects of combined transplantation of rat Schwann cells and fibroblasts on nerve regeneration of denervated perforator flaps in rats and the mechanism].
    Chen W; Wei ZR; Wu BH; Yang CL; Jin WH; Gong FY; Sun GF; Nie KY; Wang DL
    Zhonghua Shao Shang Za Zhi; 2019 Feb; 35(2):134-142. PubMed ID: 30798580
    [No Abstract]   [Full Text] [Related]  

  • 20. Robust Differentiation of mRNA-Reprogrammed Human Induced Pluripotent Stem Cells Toward a Retinal Lineage.
    Sridhar A; Ohlemacher SK; Langer KB; Meyer JS
    Stem Cells Transl Med; 2016 Apr; 5(4):417-26. PubMed ID: 26933039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.