These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 24358932)

  • 1. "Frozen" block copolymer nanomembranes with light-driven proton pumping performance.
    Kuang L; Fernandes DA; O'Halloran M; Zheng W; Jiang Y; Ladizhansky V; Brown LS; Liang H
    ACS Nano; 2014 Jan; 8(1):537-45. PubMed ID: 24358932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-directed reconstitution of proteorhodopsin with amphiphilic block copolymers induces the formation of hierarchically ordered proteopolymer membrane arrays.
    Hua D; Kuang L; Liang H
    J Am Chem Soc; 2011 Mar; 133(8):2354-7. PubMed ID: 21299247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interface for Light-Driven Electron Transfer by Photosynthetic Complexes Across Block Copolymer Membranes.
    Kuang L; Olson TL; Lin S; Flores M; Jiang Y; Zheng W; Williams JC; Allen JP; Liang H
    J Phys Chem Lett; 2014 Mar; 5(5):787-91. PubMed ID: 26274068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering a Chemical Switch into the Light-driven Proton Pump Proteorhodopsin by Cysteine Mutagenesis and Thiol Modification.
    Harder D; Hirschi S; Ucurum Z; Goers R; Meier W; Müller DJ; Fotiadis D
    Angew Chem Int Ed Engl; 2016 Jul; 55(31):8846-9. PubMed ID: 27294681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric ABC-triblock copolymer membranes induce a directed insertion of membrane proteins.
    Stoenescu R; Graff A; Meier W
    Macromol Biosci; 2004 Oct; 4(10):930-5. PubMed ID: 15490442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical multiscale hyperporous block copolymer membranes via tunable dual-phase separation.
    Yoo S; Kim JH; Shin M; Park H; Kim JH; Lee SY; Park S
    Sci Adv; 2015 Jul; 1(6):e1500101. PubMed ID: 26601212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of biofunctional nanomaterials via Escherichia coli OmpF protein air/water interface insertion/integration with copolymeric amphiphiles.
    Ho D; Chang S; Montemagno CD
    Nanomedicine; 2006 Jun; 2(2):103-12. PubMed ID: 17292122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-powering Escherichia coli with proteorhodopsin.
    Walter JM; Greenfield D; Bustamante C; Liphardt J
    Proc Natl Acad Sci U S A; 2007 Feb; 104(7):2408-12. PubMed ID: 17277079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inherently tunable electrostatic assembly of membrane proteins.
    Liang H; Whited G; Nguyen C; Okerlund A; Stucky GD
    Nano Lett; 2008 Jan; 8(1):333-9. PubMed ID: 18052232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voltage- and pH-dependent changes in vectoriality of photocurrents mediated by wild-type and mutant proteorhodopsins upon expression in Xenopus oocytes.
    Lörinczi E; Verhoefen MK; Wachtveitl J; Woerner AC; Glaubitz C; Engelhard M; Bamberg E; Friedrich T
    J Mol Biol; 2009 Oct; 393(2):320-41. PubMed ID: 19631661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered Asymmetric Heterogeneous Membrane: A Concentration-Gradient-Driven Energy Harvesting Device.
    Zhang Z; Kong XY; Xiao K; Liu Q; Xie G; Li P; Ma J; Tian Y; Wen L; Jiang L
    J Am Chem Soc; 2015 Nov; 137(46):14765-72. PubMed ID: 26535954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A membrane-reconstituted multisubunit functional proton pump on mesoporous silica particles.
    Nordlund G; Sing Ng JB; Bergström L; Brzezinski P
    ACS Nano; 2009 Sep; 3(9):2639-46. PubMed ID: 19653679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatic study of the proton pumping mechanism in bovine heart cytochrome C oxidase.
    Popović DM; Stuchebrukhov AA
    J Am Chem Soc; 2004 Feb; 126(6):1858-71. PubMed ID: 14871119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of polymersomes in membrane protein study and drug discovery: Progress, strategies, and perspectives.
    Lo CH; Zeng J
    Bioeng Transl Med; 2023 Jan; 8(1):e10350. PubMed ID: 36684106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the chimeric seven-transmembrane protein containing conserved region of helix C-F of microbial rhodopsin from Ganges River.
    Choi AR; Kim SJ; Jung BH; Jung KH
    Appl Microbiol Biotechnol; 2013 Jan; 97(2):819-28. PubMed ID: 23151811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speculations on the evolution of ion transport mechanisms.
    Wilson TH; Maloney PC
    Fed Proc; 1976 Aug; 35(10):2174-9. PubMed ID: 133032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton transport by proteorhodopsin requires that the retinal Schiff base counterion Asp-97 be anionic.
    Dioumaev AK; Wang JM; Bálint Z; Váró G; Lanyi JK
    Biochemistry; 2003 Jun; 42(21):6582-7. PubMed ID: 12767242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model for proton transport coupled to protein conformational change: application to proton pumping in the bacteriorhodopsin photocycle.
    Ferreira AM; Bashford D
    J Am Chem Soc; 2006 Dec; 128(51):16778-90. PubMed ID: 17177428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charge transport in nanoscale junctions.
    Albrecht T; Kornyshev A; Bjørnholm T
    J Phys Condens Matter; 2008 Sep; 20(37):370301. PubMed ID: 21694407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. L105K mutant of proteorhodopsin.
    Maiti TK; Yamada K; Inoue K; Kandori H
    Biochemistry; 2012 Apr; 51(15):3198-204. PubMed ID: 22458882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.