These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 24358973)

  • 1. Engineering three-dimensional cardiac microtissues for potential drug screening applications.
    Wang L; Huang G; Sha B; Wang S; Han YL; Wu J; Li Y; Du Y; Lu TJ; Xu F
    Curr Med Chem; 2014; 21(22):2497-509. PubMed ID: 24358973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic 3D Tissue Models for Advanced High-Throughput Drug Screening.
    Nam KH; Smith AS; Lone S; Kwon S; Kim DH
    J Lab Autom; 2015 Jun; 20(3):201-15. PubMed ID: 25385716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering Cardiac Tissue for Advanced Heart-On-A-Chip Platforms.
    Chen X; Liu S; Han M; Long M; Li T; Hu L; Wang L; Huang W; Wu Y
    Adv Healthc Mater; 2024 Jan; 13(1):e2301338. PubMed ID: 37471526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of functional cardiac microtissues in a beating heart-on-a-chip.
    Ugolini GS; Visone R; Cruz-Moreira D; Mainardi A; Rasponi M
    Methods Cell Biol; 2018; 146():69-84. PubMed ID: 30037467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineered heart tissues and induced pluripotent stem cells: Macro- and microstructures for disease modeling, drug screening, and translational studies.
    Tzatzalos E; Abilez OJ; Shukla P; Wu JC
    Adv Drug Deliv Rev; 2016 Jan; 96():234-244. PubMed ID: 26428619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfabrication of a platform to measure and manipulate the mechanics of engineered microtissues.
    Ramade A; Legant WR; Picart C; Chen CS; Boudou T
    Methods Cell Biol; 2014; 121():191-211. PubMed ID: 24560511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maladaptive Contractility of 3D Human Cardiac Microtissues to Mechanical Nonuniformity.
    Wang C; Koo S; Park M; Vangelatos Z; Hoang P; Conklin BR; Grigoropoulos CP; Healy KE; Ma Z
    Adv Healthc Mater; 2020 Apr; 9(8):e1901373. PubMed ID: 32090507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering of microscale three-dimensional pancreatic islet models in vitro and their biomedical applications.
    Gao B; Wang L; Han S; Pingguan-Murphy B; Zhang X; Xu F
    Crit Rev Biotechnol; 2016 Aug; 36(4):619-29. PubMed ID: 25669871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bottom-Up Engineering of Well-Defined 3D Microtissues Using Microplatforms and Biomedical Applications.
    Lee GH; Lee JS; Wang X; Lee SH
    Adv Healthc Mater; 2016 Jan; 5(1):56-74. PubMed ID: 25880830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D in vitro tissue models and their potential for drug screening.
    Kimlin L; Kassis J; Virador V
    Expert Opin Drug Discov; 2013 Dec; 8(12):1455-66. PubMed ID: 24144315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering Cardiac Muscle Tissue: A Maturating Field of Research.
    Weinberger F; Mannhardt I; Eschenhagen T
    Circ Res; 2017 Apr; 120(9):1487-1500. PubMed ID: 28450366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of tissue engineering and biomaterials in cardiac regenerative medicine.
    Zhao Y; Feric NT; Thavandiran N; Nunes SS; Radisic M
    Can J Cardiol; 2014 Nov; 30(11):1307-22. PubMed ID: 25442432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D liver models on a microplatform: well-defined culture, engineering of liver tissue and liver-on-a-chip.
    Yoon No D; Lee KH; Lee J; Lee SH
    Lab Chip; 2015 Oct; 15(19):3822-37. PubMed ID: 26279012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D bioprinting for drug discovery and development in pharmaceutics.
    Peng W; Datta P; Ayan B; Ozbolat V; Sosnoski D; Ozbolat IT
    Acta Biomater; 2017 Jul; 57():26-46. PubMed ID: 28501712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a Novel Hanging Drop Platform for Engineering Controllable 3D Microenvironments.
    Cho CY; Chiang TH; Hsieh LH; Yang WY; Hsu HH; Yeh CK; Huang CC; Huang JH
    Front Cell Dev Biol; 2020; 8():327. PubMed ID: 32457907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro cardiac tissue models: Current status and future prospects.
    Mathur A; Ma Z; Loskill P; Jeeawoody S; Healy KE
    Adv Drug Deliv Rev; 2016 Jan; 96():203-13. PubMed ID: 26428618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microengineering methods for cell-based microarrays and high-throughput drug-screening applications.
    Xu F; Wu J; Wang S; Durmus NG; Gurkan UA; Demirci U
    Biofabrication; 2011 Sep; 3(3):034101. PubMed ID: 21725152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly of RGD-Modified Hydrogel Micromodules into Permeable Three-Dimensional Hollow Microtissues Mimicking in Vivo Tissue Structures.
    Wang H; Cui J; Zheng Z; Shi Q; Sun T; Liu X; Huang Q; Fukuda T
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):41669-41679. PubMed ID: 29130303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the lung: Design and development of tissue engineered macro- and micro-physiologic lung models for research use.
    Nichols JE; Niles JA; Vega SP; Argueta LB; Eastaway A; Cortiella J
    Exp Biol Med (Maywood); 2014 Sep; 239(9):1135-69. PubMed ID: 24962174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Printing Technologies for Medical Applications.
    Shafiee A; Atala A
    Trends Mol Med; 2016 Mar; 22(3):254-265. PubMed ID: 26856235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.