BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 24359245)

  • 1. 5-Aminoimidazole-4-carboxamide ribonucleoside induces differentiation of acute myeloid leukemia cells.
    Lalic H; Dembitz V; Lukinovic-Skudar V; Banfic H; Visnjic D
    Leuk Lymphoma; 2014 Oct; 55(10):2375-83. PubMed ID: 24359245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 5-aminoimidazole-4-carboxamide ribonucleoside induces differentiation in a subset of primary acute myeloid leukemia blasts.
    Dembitz V; Lalic H; Kodvanj I; Tomic B; Batinic J; Dubravcic K; Batinic D; Bedalov A; Visnjic D
    BMC Cancer; 2020 Nov; 20(1):1090. PubMed ID: 33176741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combination therapy with 5-amino-4-imidazolecarboxamide riboside and arsenic trioxide in acute myeloid leukemia cells involving AMPK/TSC2/mTOR pathway.
    Chen L; Han F; Qu H; Yan H; Ren L; Yang S
    Pharmazie; 2013 Feb; 68(2):117-23. PubMed ID: 23469683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytotoxic effect of 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR) on childhood acute lymphoblastic leukemia (ALL) cells: implication for targeted therapy.
    Sengupta TK; Leclerc GM; Hsieh-Kinser TT; Leclerc GJ; Singh I; Barredo JC
    Mol Cancer; 2007 Jul; 6():46. PubMed ID: 17623090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of AMPK/mTOR Modulators in the Therapy of Acute Myeloid Leukemia.
    Visnjic D; Dembitz V; Lalic H
    Curr Med Chem; 2019; 26(12):2208-2229. PubMed ID: 29345570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of AMPK agonist 5-aminoimidazole-4-carboxamide ribonucleoside on proliferation, differentiation and apoptosis in U937 cells].
    Lü C; Cao J; Meng FJ; Zeng LY; Chen C; Wu QY; Xu KL
    Zhonghua Xue Ye Xue Za Zhi; 2013 Feb; 34(2):153-6. PubMed ID: 23611224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of AMP-activated protein kinase and p38 mitogen-activated protein kinase in 8-Cl-cAMP-induced growth inhibition.
    Han JH; Ahn YH; Choi KY; Hong SH
    J Cell Physiol; 2009 Jan; 218(1):104-12. PubMed ID: 18756496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of 5-aminoimidazole-4-carboxamide-ribonucleoside was mediated by p38 mitogen activated protein kinase signaling pathway in FRO thyroid cancer cells.
    Kim WG; Choi HJ; Kim TY; Shong YK; Kim WB
    Korean J Intern Med; 2014 Jul; 29(4):474-81. PubMed ID: 25045295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of the BRAF V600E mutation in thyroid cancer cell lines on the anticancer effects of 5-aminoimidazole-4-carboxamide-ribonucleoside.
    Choi HJ; Kim TY; Chung N; Yim JH; Kim WG; Kim JA; Kim WB; Shong YK
    J Endocrinol; 2011 Oct; 211(1):79-85. PubMed ID: 21795305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ribonucleoside AICAr induces differentiation of myeloid leukemia by activating the ATR/Chk1 via pyrimidine depletion.
    Dembitz V; Tomic B; Kodvanj I; Simon JA; Bedalov A; Visnjic D
    J Biol Chem; 2019 Oct; 294(42):15257-15270. PubMed ID: 31431503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AICAR inhibits PPARγ during monocyte differentiation to attenuate inflammatory responses to atherogenic lipids.
    Namgaladze D; Kemmerer M; von Knethen A; Brüne B
    Cardiovasc Res; 2013 Jun; 98(3):479-87. PubMed ID: 23531513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of CYP2E1 induces HepG2 cells death by the AMP kinase activator 5'-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR).
    Zhuge J
    Cell Biol Toxicol; 2009 Jun; 25(3):253-63. PubMed ID: 18473182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AICAR Enhances the Phagocytic Ability of Macrophages towards Apoptotic Cells through P38 Mitogen Activated Protein Kinase Activation Independent of AMP-Activated Protein Kinase.
    Quan H; Kim JM; Lee HJ; Lee SH; Choi JI; Bae HB
    PLoS One; 2015; 10(5):e0127885. PubMed ID: 26020972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 5-Aminoimidazole-4-carboxamide-ribonucleoside enhances oxidative stress-induced apoptosis through activation of nuclear factor-kappaB in mouse Neuro 2a neuroblastoma cells.
    Jung JE; Lee J; Ha J; Kim SS; Cho YH; Baik HH; Kang I
    Neurosci Lett; 2004 Jan; 354(3):197-200. PubMed ID: 14700730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 5-Aminoimidazole-4-carboxamide riboside suppresses lipopolysaccharide-induced TNF-alpha production through inhibition of phosphatidylinositol 3-kinase/Akt activation in RAW 264.7 murine macrophages.
    Jhun BS; Jin Q; Oh YT; Kim SS; Kong Y; Cho YH; Ha J; Baik HH; Kang I
    Biochem Biophys Res Commun; 2004 May; 318(2):372-80. PubMed ID: 15120611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 5-Aminoimidazole-4-carboxamide ribonucleoside-mediated adenosine monophosphate-activated protein kinase activation induces protective innate responses in bacterial endophthalmitis.
    Kumar A; Giri S; Kumar A
    Cell Microbiol; 2016 Dec; 18(12):1815-1830. PubMed ID: 27264993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AICAR and Metformin Exert AMPK-dependent Effects on INS-1E Pancreatic β-cell Apoptosis via Differential Downstream Mechanisms.
    Dai YL; Huang SL; Leng Y
    Int J Biol Sci; 2015; 11(11):1272-80. PubMed ID: 26435693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AICAR induces cyclooxygenase-2 expression through AMP-activated protein kinase-transforming growth factor-beta-activated kinase 1-p38 mitogen-activated protein kinase signaling pathway.
    Chang MY; Ho FM; Wang JS; Kang HC; Chang Y; Ye ZX; Lin WW
    Biochem Pharmacol; 2010 Oct; 80(8):1210-20. PubMed ID: 20615388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of Akt2/protein kinase B β (PKBβ) in the 8-Cl-cAMP-induced cancer cell growth inhibition.
    Choi KY; Ahn YH; Ahn HW; Cho YJ; Hong SH
    J Cell Physiol; 2013 Apr; 228(4):890-902. PubMed ID: 23018889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treatment with AICAR inhibits blastocyst development, trophectoderm differentiation and tight junction formation and function in mice.
    Calder MD; Edwards NA; Betts DH; Watson AJ
    Mol Hum Reprod; 2017 Nov; 23(11):771-785. PubMed ID: 28962017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.