These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 24359389)

  • 1. Tracking control of colloidal particles through non-homogeneous stationary flows.
    Híjar H
    J Chem Phys; 2013 Dec; 139(23):234903. PubMed ID: 24359389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harmonically bound Brownian motion in fluids under shear: Fokker-Planck and generalized Langevin descriptions.
    Híjar H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022139. PubMed ID: 25768490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Faxen's Laws of a Composite Sphere under Creeping Flow Conditions.
    Chen SB; Ye X
    J Colloid Interface Sci; 2000 Jan; 221(1):50-57. PubMed ID: 10623451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrodynamic correlations in three-particle colloidal systems in harmonic traps.
    Herrera-Velarde S; Euán-Díaz EC; Córdoba-Valdés F; Castañeda-Priego R
    J Phys Condens Matter; 2013 Aug; 25(32):325102. PubMed ID: 23838468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of a self-diffusiophoretic particle in shear flow.
    Frankel AE; Khair AS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013030. PubMed ID: 25122392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stationary and transient work-fluctuation theorems for a dragged Brownian particle.
    van Zon R; Cohen EG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046102. PubMed ID: 12786431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rheology, microstructure and migration in brownian colloidal suspensions.
    Pan W; Caswell B; Karniadakis GE
    Langmuir; 2010 Jan; 26(1):133-42. PubMed ID: 20038167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining molecular dynamics with Lattice Boltzmann: a hybrid method for the simulation of (charged) colloidal systems.
    Chatterji A; Horbach J
    J Chem Phys; 2005 May; 122(18):184903. PubMed ID: 15918761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow instability due to coupling of shear-gradients with concentration: non-uniform flow of (hard-sphere) glasses.
    Jin H; Kang K; Ahn KH; Dhont JK
    Soft Matter; 2014 Dec; 10(47):9470-85. PubMed ID: 25346243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamically Coupled Brownian Dynamics: A coarse-grain particle-based Brownian dynamics technique with hydrodynamic interactions for modeling self-developing flow of polymer solutions.
    Ahuja VR; van der Gucht J; Briels WJ
    J Chem Phys; 2018 Jan; 148(3):034902. PubMed ID: 29352779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brownian motion of a nano-colloidal particle: the role of the solvent.
    Torres-Carbajal A; Herrera-Velarde S; Castañeda-Priego R
    Phys Chem Chem Phys; 2015 Jul; 17(29):19557-68. PubMed ID: 26145458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of swelling/contracting hard spheres surmised by an irreversible Langevin equation.
    Popov AV; Melvin J; Hernandez R
    J Phys Chem A; 2006 Feb; 110(4):1635-44. PubMed ID: 16435826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A constitutive framework for the non-Newtonian pressure tensor of a simple fluid under planar flows.
    Hartkamp R; Todd BD; Luding S
    J Chem Phys; 2013 Jun; 138(24):244508. PubMed ID: 23822257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How Local and Average Particle Diffusivities of Inhomogeneous Fluids Depend on Microscopic Dynamics.
    Bollinger JA; Jain A; Truskett TM
    J Phys Chem B; 2015 Jul; 119(29):9103-13. PubMed ID: 25350488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetohydrodynamic effects on a charged colloidal sphere with arbitrary double-layer thickness.
    Hsieh TH; Keh HJ
    J Chem Phys; 2010 Oct; 133(13):134103. PubMed ID: 20942519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From equilibrium to steady-state dynamics after switch-on of shear.
    Krüger M; Weysser F; Voigtmann T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061506. PubMed ID: 20866424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonequilibrium fluctuation-dissipation relations of interacting Brownian particles driven by shear.
    Krüger M; Fuchs M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011408. PubMed ID: 20365374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Equilibrium and nonequilibrium dynamics of soft sphere fluids.
    Ding Y; Mittal J
    Soft Matter; 2015 Jul; 11(26):5274-81. PubMed ID: 26052921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonisothermal Brownian motion: Thermophoresis as the macroscopic manifestation of thermally biased molecular motion.
    Brenner H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 1):061201. PubMed ID: 16485937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rheology dynamics of aggregating colloidal suspensions.
    Mohtaschemi M; Puisto A; Illa X; Alava MJ
    Soft Matter; 2014 May; 10(17):2971-81. PubMed ID: 24695455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.