These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 24359557)

  • 1. Direct glucose production from lignocellulose using Clostridium thermocellum cultures supplemented with a thermostable β-glucosidase.
    Prawitwong P; Waeonukul R; Tachaapaikoon C; Pason P; Ratanakhanokchai K; Deng L; Sermsathanaswadi J; Septiningrum K; Mori Y; Kosugi A
    Biotechnol Biofuels; 2013 Dec; 6(1):184. PubMed ID: 24359557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient saccharification of ammonia soaked rice straw by combination of Clostridium thermocellum cellulosome and Thermoanaerobacter brockii β-glucosidase.
    Waeonukul R; Kosugi A; Tachaapaikoon C; Pason P; Ratanakhanokchai K; Prawitwong P; Deng L; Saito M; Mori Y
    Bioresour Technol; 2012 Mar; 107():352-7. PubMed ID: 22257861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lignocellulosic saccharification by a newly isolated bacterium, Ruminiclostridium thermocellum M3 and cellular cellulase activities for high ratio of glucose to cellobiose.
    Sheng T; Zhao L; Gao LF; Liu WZ; Cui MH; Guo ZC; Ma XD; Ho SH; Wang AJ
    Biotechnol Biofuels; 2016; 9():172. PubMed ID: 27525041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose production from cellulose through biological simultaneous enzyme production and saccharification using recombinant bacteria expressing the β-glucosidase gene.
    Ichikawa S; Ichihara M; Ito T; Isozaki K; Kosugi A; Karita S
    J Biosci Bioeng; 2019 Mar; 127(3):340-344. PubMed ID: 30237013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological cellulose saccharification using a coculture of Clostridium thermocellum and Thermobrachium celere strain A9.
    Nhim S; Waeonukul R; Uke A; Baramee S; Ratanakhanokchai K; Tachaapaikoon C; Pason P; Liu YJ; Kosugi A
    Appl Microbiol Biotechnol; 2022 Mar; 106(5-6):2133-2145. PubMed ID: 35157106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel cellulase recycling method using a combination of Clostridium thermocellum cellulosomes and Thermoanaerobacter brockii β-glucosidase.
    Waeonukul R; Kosugi A; Prawitwong P; Deng L; Tachaapaikoon C; Pason P; Ratanakhanokchai K; Saito M; Mori Y
    Bioresour Technol; 2013 Feb; 130():424-30. PubMed ID: 23313689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical Pretreatment-Independent Saccharifications of Xylan and Cellulose of Rice Straw by Bacterial Weak Lignin-Binding Xylanolytic and Cellulolytic Enzymes.
    Teeravivattanakit T; Baramee S; Phitsuwan P; Sornyotha S; Waeonukul R; Pason P; Tachaapaikoon C; Poomputsa K; Kosugi A; Sakka K; Ratanakhanokchai K
    Appl Environ Microbiol; 2017 Nov; 83(22):. PubMed ID: 28864653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of a new cellulosome-producing Clostridium thermocellum strain.
    Tachaapaikoon C; Kosugi A; Pason P; Waeonukul R; Ratanakhanokchai K; Kyu KL; Arai T; Murata Y; Mori Y
    Biodegradation; 2012 Feb; 23(1):57-68. PubMed ID: 21637976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomass augmentation through thermochemical pretreatments greatly enhances digestion of switchgrass by
    Kothari N; Holwerda EK; Cai CM; Kumar R; Wyman CE
    Biotechnol Biofuels; 2018; 11():219. PubMed ID: 30087696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Addition of cloned beta-glucosidase enhances the degradation of crystalline cellulose by the Clostridium thermocellum cellulose complex.
    Kadam SK; Demain AL
    Biochem Biophys Res Commun; 1989 Jun; 161(2):706-11. PubMed ID: 2500123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient whole-cell-catalyzing cellulose saccharification using engineered
    Zhang J; Liu S; Li R; Hong W; Xiao Y; Feng Y; Cui Q; Liu YJ
    Biotechnol Biofuels; 2017; 10():124. PubMed ID: 28507596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro assembly and cellulolytic activity of a β-glucosidase-integrated cellulosome complex.
    Hirano K; Saito T; Shinoda S; Haruki M; Hirano N
    FEMS Microbiol Lett; 2019 Sep; 366(17):. PubMed ID: 31584652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The spatial proximity effect of beta-glucosidase and cellulosomes on cellulose degradation.
    Li X; Xiao Y; Feng Y; Li B; Li W; Cui Q
    Enzyme Microb Technol; 2018 Aug; 115():52-61. PubMed ID: 29859603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiochemical and Thermodynamic Characterization of Highly Active Mutated Aspergillus niger β-glucosidase for Lignocellulose Hydrolysis.
    Javed MR; Rashid MH; Riaz M; Nadeem H; Qasim M; Ashiq N
    Protein Pept Lett; 2018; 25(2):208-219. PubMed ID: 29384047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis.
    Raman B; Pan C; Hurst GB; Rodriguez M; McKeown CK; Lankford PK; Samatova NF; Mielenz JR
    PLoS One; 2009; 4(4):e5271. PubMed ID: 19384422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient saccharification for non-treated cassava pulp by supplementation of Clostridium thermocellum cellulosome and Thermoanaerobacter brockii β-glucosidase.
    Vaithanomsat P; Kosugi A; Apiwatanapiwat W; Thanapase W; Waeonukul R; Tachaapaikoon C; Pason P; Mori Y
    Bioresour Technol; 2013 Mar; 132():383-6. PubMed ID: 23245453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How does cellulosome composition influence deconstruction of lignocellulosic substrates in
    Yoav S; Barak Y; Shamshoum M; Borovok I; Lamed R; Dassa B; Hadar Y; Morag E; Bayer EA
    Biotechnol Biofuels; 2017; 10():222. PubMed ID: 28932263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β-glucosidase.
    Kim S; Baek SH; Lee K; Hahn JS
    Microb Cell Fact; 2013 Feb; 12():14. PubMed ID: 23383678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-step ethanol production from lignocellulose using novel extremely thermophilic bacteria.
    Svetlitchnyi VA; Kensch O; Falkenhan DA; Korseska SG; Lippert N; Prinz M; Sassi J; Schickor A; Curvers S
    Biotechnol Biofuels; 2013 Feb; 6(1):31. PubMed ID: 23448304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ethanol production from cellobiose, amorphous cellulose, and crystalline cellulose by recombinant Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes for ethanol production and plasmids expressing thermostable cellulase genes from Clostridium thermocellum.
    Wood BE; Ingram LO
    Appl Environ Microbiol; 1992 Jul; 58(7):2103-10. PubMed ID: 1637151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.