These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 24359638)

  • 1. ATHENA: Identifying interactions between different levels of genomic data associated with cancer clinical outcomes using grammatical evolution neural network.
    Kim D; Li R; Dudek SM; Ritchie MD
    BioData Min; 2013 Dec; 6(1):23. PubMed ID: 24359638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Knowledge-driven genomic interactions: an application in ovarian cancer.
    Kim D; Li R; Dudek SM; Frase AT; Pendergrass SA; Ritchie MD
    BioData Min; 2014; 7():20. PubMed ID: 25214892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting censored survival data based on the interactions between meta-dimensional omics data in breast cancer.
    Kim D; Li R; Dudek SM; Ritchie MD
    J Biomed Inform; 2015 Aug; 56():220-8. PubMed ID: 26048077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporating inter-relationships between different levels of genomic data into cancer clinical outcome prediction.
    Kim D; Shin H; Sohn KA; Verma A; Ritchie MD; Kim JH
    Methods; 2014 Jun; 67(3):344-53. PubMed ID: 24561168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrative network analysis for survival-associated gene-gene interactions across multiple genomic profiles in ovarian cancer.
    Jeong HH; Leem S; Wee K; Sohn KA
    J Ovarian Res; 2015 Jul; 8():42. PubMed ID: 26138921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using knowledge-driven genomic interactions for multi-omics data analysis: metadimensional models for predicting clinical outcomes in ovarian carcinoma.
    Kim D; Li R; Lucas A; Verma SS; Dudek SM; Ritchie MD
    J Am Med Inform Assoc; 2017 May; 24(3):577-587. PubMed ID: 28040685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Knowledge boosting: a graph-based integration approach with multi-omics data and genomic knowledge for cancer clinical outcome prediction.
    Kim D; Joung JG; Sohn KA; Shin H; Park YR; Ritchie MD; Kim JH
    J Am Med Inform Assoc; 2015 Jan; 22(1):109-20. PubMed ID: 25002459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative impact of multi-layered genomic data on gene expression phenotypes in serous ovarian tumors.
    Sohn KA; Kim D; Lim J; Kim JH
    BMC Syst Biol; 2013 Dec; 7 Suppl 6(Suppl 6):S9. PubMed ID: 24521303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data.
    Wang E; Zaman N; Mcgee S; Milanese JS; Masoudi-Nejad A; O'Connor-McCourt M
    Semin Cancer Biol; 2015 Feb; 30():4-12. PubMed ID: 24747696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time to recurrence and survival in serous ovarian tumors predicted from integrated genomic profiles.
    Mankoo PK; Shen R; Schultz N; Levine DA; Sander C
    PLoS One; 2011; 6(11):e24709. PubMed ID: 22073136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overview of resistance to systemic therapy in patients with breast cancer.
    Gonzalez-Angulo AM; Morales-Vasquez F; Hortobagyi GN
    Adv Exp Med Biol; 2007; 608():1-22. PubMed ID: 17993229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene expression profiling for guiding adjuvant chemotherapy decisions in women with early breast cancer: an evidence-based and economic analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2010; 10(23):1-57. PubMed ID: 23074401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic effect of different levels of genomic data for cancer clinical outcome prediction.
    Kim D; Shin H; Song YS; Kim JH
    J Biomed Inform; 2012 Dec; 45(6):1191-8. PubMed ID: 22910106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A DNA methylation signature to improve survival prediction of gastric cancer.
    Peng Y; Wu Q; Wang L; Wang H; Yin F
    Clin Epigenetics; 2020 Jan; 12(1):15. PubMed ID: 31959204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of candidate cancer drivers by integrative Epi-DNA and Gene Expression (iEDGE) data analysis.
    Li A; Chapuy B; Varelas X; Sebastiani P; Monti S
    Sci Rep; 2019 Nov; 9(1):16904. PubMed ID: 31729402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 12-gene genomic instability signature predicts clinical outcomes in multiple cancer types.
    Mettu RK; Wan YW; Habermann JK; Ried T; Guo NL
    Int J Biol Markers; 2010; 25(4):219-28. PubMed ID: 21161944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biologically inspired survival analysis based on integrating gene expression as mediator with genomic variants.
    Youssef I; Clarke R; Shih IeM; Wang Y; Yu G
    Comput Biol Med; 2016 Oct; 77():231-9. PubMed ID: 27619193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel gene signatures for prognosis prediction in ovarian cancer.
    Bao M; Zhang L; Hu Y
    J Cell Mol Med; 2020 Sep; 24(17):9972-9984. PubMed ID: 32666642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrative regression network for genomic association study.
    Vangimalla RR; Jeong HH; Sohn KA
    BMC Med Genomics; 2016 Aug; 9 Suppl 1(Suppl 1):31. PubMed ID: 27535739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular cytogenetics as a clinical test for prognostic and predictive biomarkers in newly diagnosed ovarian cancer.
    Gunn S; Reveles X; Weldon K; Barrera A; Ishaque M; Taylor D; McCaskill C; Kim J; Shah R; Mohammed M; Barry T; Kaiser B; Patnaik A; Tolcher A
    J Ovarian Res; 2013 Jan; 6(1):2. PubMed ID: 23289505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.