These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 24359696)

  • 41. Simulation of drop movement over an inclined surface using smoothed particle hydrodynamics.
    Das AK; Das PK
    Langmuir; 2009 Oct; 25(19):11459-66. PubMed ID: 19719159
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bubbles and drops on curved surfaces.
    Soleimani M; Hill RJ; van de Ven TG
    Langmuir; 2013 Nov; 29(46):14168-77. PubMed ID: 24093829
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optimisation of calculation methods for determination of surface tensions by drop profile analysis tensiometry.
    Zholob SA; Makievski AV; Miller R; Fainerman VB
    Adv Colloid Interface Sci; 2007 Oct; 134-135():322-9. PubMed ID: 17559784
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Jet drops from bursting bubbles: How gravity and viscosity couple to inhibit droplet production.
    Walls PL; Henaux L; Bird JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):021002. PubMed ID: 26382335
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of the Lateral Retention Forces on Sessile, Pendant, and Inverted Sessile Drops.
    de la Madrid R; Garza F; Kirk J; Luong H; Snowden L; Taylor J; Vizena B
    Langmuir; 2019 Feb; 35(7):2871-2877. PubMed ID: 30724570
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Acoustically levitated dancing drops: Self-excited oscillation to chaotic shedding.
    Lin PC; I L
    Phys Rev E; 2016 Feb; 93(2):021101. PubMed ID: 26986279
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Resolving an ostensible inconsistency in calculating the evaporation rate of sessile drops.
    Chini SF; Amirfazli A
    Adv Colloid Interface Sci; 2017 May; 243():121-128. PubMed ID: 28153334
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Coalescence and noncoalescence of sessile drops: impact of surface forces.
    Karpitschka S; Hanske C; Fery A; Riegler H
    Langmuir; 2014 Jun; 30(23):6826-30. PubMed ID: 24841430
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modeling of surface tension and contact angles with smoothed particle hydrodynamics.
    Tartakovsky A; Meakin P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026301. PubMed ID: 16196705
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The elastic Rayleigh drop.
    Tamim SI; Bostwick JB
    Soft Matter; 2019 Dec; 15(45):9244-9252. PubMed ID: 31656963
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaporation and fluid dynamics of a sessile drop of capillary size.
    Barash LY; Bigioni TP; Vinokur VM; Shchur LN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046301. PubMed ID: 19518327
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Range of validity of drop shape techniques for surface tension measurement.
    Saad SM; Policova Z; Acosta EJ; Neumann AW
    Langmuir; 2010 Sep; 26(17):14004-13. PubMed ID: 20707340
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Drop shape visualization and contact angle measurement on curved surfaces.
    Guilizzoni M
    J Colloid Interface Sci; 2011 Dec; 364(1):230-6. PubMed ID: 21889152
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Vibrated sessile drops: transition between pinned and mobile contact line oscillations.
    Noblin X; Buguin A; Brochard-Wyart F
    Eur Phys J E Soft Matter; 2004 Aug; 14(4):395-404. PubMed ID: 15309640
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modeling non-spherical oscillations and stability of acoustically driven shelled microbubbles.
    Loughran J; Eckersley RJ; Tang MX
    J Acoust Soc Am; 2012 Jun; 131(6):4349-57. PubMed ID: 22712909
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The proper orthogonal decomposition: A powerful tool for studying drop oscillations.
    Giorgi ML; Duval H; Balabane M
    Rev Sci Instrum; 2021 Nov; 92(11):113903. PubMed ID: 34852554
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An interferometric technique to study capillary waves.
    Cantu' L; Raudino A; Corti M
    Adv Colloid Interface Sci; 2017 Sep; 247():23-32. PubMed ID: 28641814
    [TBL] [Abstract][Full Text] [Related]  

  • 58. X-ray computed microtomography for drop shape analysis and contact angle measurement.
    Santini M; Guilizzoni M; Fest-Santini S
    J Colloid Interface Sci; 2013 Nov; 409():204-10. PubMed ID: 23859817
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The role of microparticles on the shape and surface tension of static bubbles.
    Wang H; Brito-Parada PR
    J Colloid Interface Sci; 2021 Apr; 587():14-23. PubMed ID: 33360886
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Capillary Stokes drift: a new driving mechanism for mixing in AC-electrowetting.
    Mugele F; Staicu A; Bakker R; van den Ende D
    Lab Chip; 2011 Jun; 11(12):2011-6. PubMed ID: 21526233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.