These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. PqsL uses reduced flavin to produce 2-hydroxylaminobenzoylacetate, a preferred PqsBC substrate in alkyl quinolone biosynthesis in Drees SL; Ernst S; Belviso BD; Jagmann N; Hennecke U; Fetzner S J Biol Chem; 2018 Jun; 293(24):9345-9357. PubMed ID: 29669807 [TBL] [Abstract][Full Text] [Related]
3. Review: Antibiotic discovery in the age of structural biology - a comprehensive overview with special reference to development of drugs for the treatment of Pseudomonas aeruginosa infection. Koehnke A; Friedrich RE In Vivo; 2015; 29(2):161-7. PubMed ID: 25792642 [TBL] [Abstract][Full Text] [Related]
4. The chemical topology of a bacterial swarm. Garg N; Whiteley M J Biol Chem; 2018 Jun; 293(24):9553-9554. PubMed ID: 29907734 [TBL] [Abstract][Full Text] [Related]
5. A predicted immunity protein confers resistance to pyocin S5 in a sensitive strain of Pseudomonas aeruginosa. Rasouliha BH; Ling H; Ho CL; Chang MW Chembiochem; 2013 Dec; 14(18):2444-6. PubMed ID: 24222552 [No Abstract] [Full Text] [Related]
6. Fragment library screening identifies hits that bind to the non-catalytic surface of Pseudomonas aeruginosa DsbA1. Mohanty B; Rimmer K; McMahon RM; Headey SJ; Vazirani M; Shouldice SR; Coinçon M; Tay S; Morton CJ; Simpson JS; Martin JL; Scanlon MJ PLoS One; 2017; 12(3):e0173436. PubMed ID: 28346540 [TBL] [Abstract][Full Text] [Related]
7. [Molecular determinants in regulating Pseudomonas aeruginosa type III secretion system--a review]. Luo Q; Jin S Wei Sheng Wu Xue Bao; 2008 Oct; 48(10):1413-7. PubMed ID: 19160828 [TBL] [Abstract][Full Text] [Related]
8. Chemical Modification and Detoxification of the Pseudomonas aeruginosa Toxin 2-Heptyl-4-hydroxyquinoline N-Oxide by Environmental and Pathogenic Bacteria. Thierbach S; Birmes FS; Letzel MC; Hennecke U; Fetzner S ACS Chem Biol; 2017 Sep; 12(9):2305-2312. PubMed ID: 28708374 [TBL] [Abstract][Full Text] [Related]
9. Relationship between antibiotic use and incidence of MexXY-OprM overproducers among clinical isolates of Pseudomonas aeruginosa. Hocquet D; Muller A; Blanc K; Plésiat P; Talon D; Monnet DL; Bertrand X Antimicrob Agents Chemother; 2008 Mar; 52(3):1173-5. PubMed ID: 18180356 [TBL] [Abstract][Full Text] [Related]
11. Identification of small-molecule antagonists of the Pseudomonas aeruginosa transcriptional regulator PqsR: biophysically guided hit discovery and optimization. Klein T; Henn C; de Jong JC; Zimmer C; Kirsch B; Maurer CK; Pistorius D; Müller R; Steinbach A; Hartmann RW ACS Chem Biol; 2012 Sep; 7(9):1496-501. PubMed ID: 22765028 [TBL] [Abstract][Full Text] [Related]
12. MexAB-OprM- and MexXY-overproducing mutants are very prevalent among clinical strains of Pseudomonas aeruginosa with reduced susceptibility to ticarcillin. Hocquet D; Roussel-Delvallez M; Cavallo JD; Plésiat P Antimicrob Agents Chemother; 2007 Apr; 51(4):1582-3. PubMed ID: 17220417 [No Abstract] [Full Text] [Related]
13. Production of rhamnolipids by Pseudomonas aeruginosa. Soberón-Chávez G; Lépine F; Déziel E Appl Microbiol Biotechnol; 2005 Oct; 68(6):718-25. PubMed ID: 16160828 [TBL] [Abstract][Full Text] [Related]
14. Beta-lactamases identified in clinical isolates of Pseudomonas aeruginosa. Zhao WH; Hu ZQ Crit Rev Microbiol; 2010 Aug; 36(3):245-58. PubMed ID: 20482453 [TBL] [Abstract][Full Text] [Related]
15. RELATIVE EXPRESSION OF EFFLUX PUMPS IN MULTI DRUG RESISTANT PSEUDOMONAS AERUGINOSA. Azimi L; Namvar AE; Jamali S; Lari AR; Bijari A; Lari AR Roum Arch Microbiol Immunol; 2015; 74(3-4):86-90. PubMed ID: 27328522 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous production of rhamnolipids, 2-alkyl-4-hydroxyquinolines, and phenazines by clinical isolates of Pseudomonas aeruginosa. Smeal BC; Bender L; Jungkind DL; Hastie AT J Clin Microbiol; 1987 Jul; 25(7):1308-10. PubMed ID: 3112182 [TBL] [Abstract][Full Text] [Related]
17. Siderophore-dependent iron uptake systems as gates for antibiotic Trojan horse strategies against Pseudomonas aeruginosa. Mislin GL; Schalk IJ Metallomics; 2014 Mar; 6(3):408-20. PubMed ID: 24481292 [TBL] [Abstract][Full Text] [Related]
18. Synthesis, molecular docking, and biofilm formation inhibitory activity of 5-substituted 3,4-dihalo-5h-furan-2-one derivatives on Pseudomonas aeruginosa. Liu GY; Guo BQ; Chen WN; Cheng C; Zhang QL; Dai MB; Sun JR; Sun PH; Chen WM Chem Biol Drug Des; 2012 May; 79(5):628-38. PubMed ID: 22268453 [TBL] [Abstract][Full Text] [Related]
19. Discovery of efficacious Pseudomonas aeruginosa-targeted siderophore-conjugated monocarbams by application of a semi-mechanistic pharmacokinetic/pharmacodynamic model. Murphy-Benenato KE; Bhagunde PR; Chen A; Davis HE; Durand-Réville TF; Ehmann DE; Galullo V; Harris JJ; Hatoum-Mokdad H; Jahić H; Kim A; Manjunatha MR; Manyak EL; Mueller J; Patey S; Quiroga O; Rooney M; Sha L; Shapiro AB; Sylvester M; Tan B; Tsai AS; Uria-Nickelsen M; Wu Y; Zambrowski M; Zhao SX J Med Chem; 2015 Mar; 58(5):2195-205. PubMed ID: 25658376 [TBL] [Abstract][Full Text] [Related]
20. Targeting quorum sensing in Pseudomonas aeruginosa biofilms: current and emerging inhibitors. Jakobsen TH; Bjarnsholt T; Jensen PØ; Givskov M; Høiby N Future Microbiol; 2013 Jul; 8(7):901-21. PubMed ID: 23841636 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]