These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 24359871)
1. A Stiffness Reduction Method for efficient absorption of waves at boundaries for use in commercial Finite Element codes. Pettit JR; Walker A; Cawley P; Lowe MJ Ultrasonics; 2014 Sep; 54(7):1868-79. PubMed ID: 24359871 [TBL] [Abstract][Full Text] [Related]
2. Perfectly matched layers for frequency-domain integral equation acoustic scattering problems. Alles EJ; van Dongen KW IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):1077-86. PubMed ID: 21622063 [TBL] [Abstract][Full Text] [Related]
3. A nodal discontinuous Galerkin finite element method for nonlinear elastic wave propagation. Bou Matar O; Guerder PY; Li Y; Vandewoestyne B; Van Den Abeele K J Acoust Soc Am; 2012 May; 131(5):3650-63. PubMed ID: 22559342 [TBL] [Abstract][Full Text] [Related]
4. Convolutional perfectly matched layer for elastic second-order wave equation. Li Y; Bou Matar O J Acoust Soc Am; 2010 Mar; 127(3):1318-27. PubMed ID: 20329831 [TBL] [Abstract][Full Text] [Related]
5. Simulations of photoacoustic wave propagation using a finite-difference time-domain method with Berenger's perfectly matched layers. Sheu YL; Li PC J Acoust Soc Am; 2008 Dec; 124(6):3471-80. PubMed ID: 19206776 [TBL] [Abstract][Full Text] [Related]
6. A novel unsplit perfectly matched layer for the second-order acoustic wave equation. Ma Y; Yu J; Wang Y Ultrasonics; 2014 Aug; 54(6):1568-74. PubMed ID: 24794509 [TBL] [Abstract][Full Text] [Related]
7. A compact perfectly matched layer algorithm for acoustic simulations in the time domain with smoothed particle hydrodynamic method. Yang J; Zhang X; Liu GR; Zhang W J Acoust Soc Am; 2019 Jan; 145(1):204. PubMed ID: 30710919 [TBL] [Abstract][Full Text] [Related]
8. Finite element modelling of ultrasound, with reference to transducers and AE waves. Hill R; Forsyth SA; Macey P Ultrasonics; 2004 Apr; 42(1-9):253-8. PubMed ID: 15047294 [TBL] [Abstract][Full Text] [Related]
9. Efficient frequency-domain finite element modeling of two-dimensional elastodynamic scattering. Wilcox PD; Velichko A J Acoust Soc Am; 2010 Jan; 127(1):155-65. PubMed ID: 20058959 [TBL] [Abstract][Full Text] [Related]
10. Consistent modeling of boundaries in acoustic finite-difference time-domain simulations. Häggblad J; Engquist B J Acoust Soc Am; 2012 Sep; 132(3):1303-10. PubMed ID: 22978858 [TBL] [Abstract][Full Text] [Related]
11. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues. Sun W; Sacks MS Biomech Model Mechanobiol; 2005 Nov; 4(2-3):190-9. PubMed ID: 16075264 [TBL] [Abstract][Full Text] [Related]
12. Filtering of high modal frequencies for stable real-time explicit integration of deformable objects using the Finite Element Method. Aguinaga I; Fierz B; Spillmann J; Harders M Prog Biophys Mol Biol; 2010 Dec; 103(2-3):225-35. PubMed ID: 20869390 [TBL] [Abstract][Full Text] [Related]
13. Numerical Study on Ultrasonic Guided Waves for the Inspection of Polygonal Drill Pipes. Wan X; Zhang X; Fan H; Tse PW; Dong M; Ma H Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31071986 [TBL] [Abstract][Full Text] [Related]
14. The simulation of Lamb waves in a cracked plate using the scaled boundary finite element method. Gravenkamp H; Prager J; Saputra AA; Song C J Acoust Soc Am; 2012 Sep; 132(3):1358-67. PubMed ID: 22978864 [TBL] [Abstract][Full Text] [Related]
15. Simulations of thermally induced photoacoustic wave propagation using a pseudospectral time-domain method. Sheu YL; Li PC IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):1104-12. PubMed ID: 19473928 [TBL] [Abstract][Full Text] [Related]
16. Semi-analytical finite element analysis of elastic waveguides subjected to axial loads. Loveday PW Ultrasonics; 2009 Mar; 49(3):298-300. PubMed ID: 19108858 [TBL] [Abstract][Full Text] [Related]
17. The Partition of Unity Finite Element Method for the simulation of waves in air and poroelastic media. Chazot JD; Perrey-Debain E; Nennig B J Acoust Soc Am; 2014 Feb; 135(2):724-33. PubMed ID: 25234881 [TBL] [Abstract][Full Text] [Related]
18. Numerical simulation of ultrasonic wave propagation in anisotropic and attenuative solid materials. You Z; Lusk M; Ludwig R; Lord W IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(5):436-45. PubMed ID: 18267605 [TBL] [Abstract][Full Text] [Related]
19. Guided waves dispersion equations for orthotropic multilayered pipes solved using standard finite elements code. Predoi MV Ultrasonics; 2014 Sep; 54(7):1825-31. PubMed ID: 24565083 [TBL] [Abstract][Full Text] [Related]
20. A time-domain finite element boundary integration method for ultrasonic nondestructive evaluation. Shi F; Choi W; Skelton EA; Lowe MJ; Craster RV IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Dec; 61(12):2054-66. PubMed ID: 25474780 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]