These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 24359926)

  • 1. Nucleotide excision repair and the 26S proteasome function together to promote trinucleotide repeat expansions.
    Concannon C; Lahue RS
    DNA Repair (Amst); 2014 Jan; 13():42-9. PubMed ID: 24359926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The 26S proteasome drives trinucleotide repeat expansions.
    Concannon C; Lahue RS
    Nucleic Acids Res; 2013 Jul; 41(12):6098-108. PubMed ID: 23620289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Saccharomyces cerevisiae Mre11-Rad50-Xrs2 complex promotes trinucleotide repeat expansions independently of homologous recombination.
    Ye Y; Kirkham-McCarthy L; Lahue RS
    DNA Repair (Amst); 2016 Jul; 43():1-8. PubMed ID: 27173583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rev1 enhances CAG.CTG repeat stability in Saccharomyces cerevisiae.
    Collins NS; Bhattacharyya S; Lahue RS
    DNA Repair (Amst); 2007 Jan; 6(1):38-44. PubMed ID: 16979389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postreplication repair inhibits CAG.CTG repeat expansions in Saccharomyces cerevisiae.
    Daee DL; Mertz T; Lahue RS
    Mol Cell Biol; 2007 Jan; 27(1):102-10. PubMed ID: 17060452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rad23 stabilizes Rad4 from degradation by the Ub/proteasome pathway.
    Ortolan TG; Chen L; Tongaonkar P; Madura K
    Nucleic Acids Res; 2004; 32(22):6490-500. PubMed ID: 15601997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Saccharomyces cerevisiae Srs2 DNA helicase selectively blocks expansions of trinucleotide repeats.
    Bhattacharyya S; Lahue RS
    Mol Cell Biol; 2004 Sep; 24(17):7324-30. PubMed ID: 15314145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Chromatin Remodeler Isw1 Prevents CAG Repeat Expansions During Transcription in
    Koch MR; House NCM; Cosetta CM; Jong RM; Salomon CG; Joyce CE; Philips EA; Su XA; Freudenreich CH
    Genetics; 2018 Mar; 208(3):963-976. PubMed ID: 29305386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rad23 links DNA repair to the ubiquitin/proteasome pathway.
    Schauber C; Chen L; Tongaonkar P; Vega I; Lambertson D; Potts W; Madura K
    Nature; 1998 Feb; 391(6668):715-8. PubMed ID: 9490418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytosine deamination and base excision repair cause R-loop-induced CAG repeat fragility and instability in
    Su XA; Freudenreich CH
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):E8392-E8401. PubMed ID: 28923949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracking Expansions of Stable and Threshold Length Trinucleotide Repeat Tracts In Vivo and In Vitro Using Saccharomyces cerevisiae.
    Williams GM; Petrides AK; Balakrishnan L; Surtees JA
    Methods Mol Biol; 2020; 2056():25-68. PubMed ID: 31586340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Xpa deficiency reduces CAG trinucleotide repeat instability in neuronal tissues in a mouse model of SCA1.
    Hubert L; Lin Y; Dion V; Wilson JH
    Hum Mol Genet; 2011 Dec; 20(24):4822-30. PubMed ID: 21926083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Haploinsufficiency of yeast FEN1 causes instability of expanded CAG/CTG tracts in a length-dependent manner.
    Yang J; Freudenreich CH
    Gene; 2007 May; 393(1-2):110-5. PubMed ID: 17383831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A SCA7 CAG/CTG repeat expansion is stable in Drosophila melanogaster despite modulation of genomic context and gene dosage.
    Jackson SM; Whitworth AJ; Greene JC; Libby RT; Baccam SL; Pallanck LJ; La Spada AR
    Gene; 2005 Feb; 347(1):35-41. PubMed ID: 15715978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rad33, a new factor involved in nucleotide excision repair in Saccharomyces cerevisiae.
    den Dulk B; Sun SM; de Ruijter M; Brandsma JA; Brouwer J
    DNA Repair (Amst); 2006 Jun; 5(6):683-92. PubMed ID: 16595192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct functions of the ubiquitin-proteasome pathway influence nucleotide excision repair.
    Gillette TG; Yu S; Zhou Z; Waters R; Johnston SA; Reed SH
    EMBO J; 2006 Jun; 25(11):2529-38. PubMed ID: 16675952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of Rad23 protein in yeast nucleotide excision repair.
    Xie Z; Liu S; Zhang Y; Wang Z
    Nucleic Acids Res; 2004; 32(20):5981-90. PubMed ID: 15545636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Msh2-Msh3 interferes with Okazaki fragment processing to promote trinucleotide repeat expansions.
    Kantartzis A; Williams GM; Balakrishnan L; Roberts RL; Surtees JA; Bambara RA
    Cell Rep; 2012 Aug; 2(2):216-22. PubMed ID: 22938864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MSH3 Promotes Dynamic Behavior of Trinucleotide Repeat Tracts In Vivo.
    Williams GM; Surtees JA
    Genetics; 2015 Jul; 200(3):737-54. PubMed ID: 25969461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The 19S complex of the proteasome regulates nucleotide excision repair in yeast.
    Gillette TG; Huang W; Russell SJ; Reed SH; Johnston SA; Friedberg EC
    Genes Dev; 2001 Jun; 15(12):1528-39. PubMed ID: 11410533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.