BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 24360198)

  • 1. The passive properties of muscle fibers are velocity dependent.
    Rehorn MR; Schroer AK; Blemker SS
    J Biomech; 2014 Feb; 47(3):687-93. PubMed ID: 24360198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscous elements have little impact on measured passive length-tension properties of human gastrocnemius muscle-tendon units in vivo.
    Tian M; Hoang PD; Gandevia SC; Herbert RD; Bilston LE
    J Biomech; 2011 Apr; 44(7):1334-9. PubMed ID: 21277577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the tension responses to ramp shortening and lengthening in intact mammalian muscle fibres: crossbridge and non-crossbridge contributions.
    Roots H; Offer GW; Ranatunga KW
    J Muscle Res Cell Motil; 2007; 28(2-3):123-39. PubMed ID: 17610136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A nonlinear model of passive muscle viscosity.
    Meyer GA; McCulloch AD; Lieber RL
    J Biomech Eng; 2011 Sep; 133(9):091007. PubMed ID: 22010742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viscoelastic properties of passive skeletal muscle in compression: stress-relaxation behaviour and constitutive modelling.
    Van Loocke M; Lyons CG; Simms CK
    J Biomech; 2008; 41(7):1555-66. PubMed ID: 18396290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical elastic tensile behavior of muscle fiber bundles in traumatic loading events.
    Tamura A; Hongu JI; Matsumoto T
    Clin Biomech (Bristol, Avon); 2019 Oct; 69():184-190. PubMed ID: 31376809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel constitutive model of skeletal muscle taking into account anisotropic damage.
    Ito D; Tanaka E; Yamamoto S
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):85-93. PubMed ID: 19878905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strain-dependent stress relaxation behavior of healthy right ventricular free wall.
    Liu W; Labus KM; Ahern M; LeBar K; Avazmohammadi R; Puttlitz CM; Wang Z
    Acta Biomater; 2022 Oct; 152():290-299. PubMed ID: 36030049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sarcomeric visco-elasticity of chemically skinned skeletal muscle fibres of the rabbit at rest.
    Ranatunga KW
    J Muscle Res Cell Motil; 2001; 22(5):399-414. PubMed ID: 11964066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between short-range stiffness and yielding in type-identified, chemically skinned muscle fibers from the cat triceps surae muscles.
    Malamud JG; Godt RE; Nichols TR
    J Neurophysiol; 1996 Oct; 76(4):2280-9. PubMed ID: 8899603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of inorganic phosphate and arsenate on both passive muscle visco-elasticity and maximum Ca2+ activated tension in chemically skinned rat fast and slow twitch muscle fibres.
    Mutungi G
    J Muscle Res Cell Motil; 2003; 24(1):65-75. PubMed ID: 12953837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling functional effects of muscle geometry.
    van der Linden BJ; Koopman HF; Grootenboer HJ; Huijing PA
    J Electromyogr Kinesiol; 1998 Apr; 8(2):101-9. PubMed ID: 9680950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element modeling of passive material influence on the deformation and force output of skeletal muscle.
    Hodgson JA; Chi SW; Yang JP; Chen JS; Edgerton VR; Sinha S
    J Mech Behav Biomed Mater; 2012 May; 9():163-83. PubMed ID: 22498294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Passive properties of human skeletal muscle during stretch maneuvers. A review.
    Magnusson SP
    Scand J Med Sci Sports; 1998 Apr; 8(2):65-77. PubMed ID: 9564710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic Models in Applied Physiology. Merosin deficiency leads to alterations in passive and active skeletal muscle mechanics.
    Jannapureddy SR; Patel ND; Hwang W; Boriek AM
    J Appl Physiol (1985); 2003 Jun; 94(6):2524-33; discussion 2523. PubMed ID: 12736195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear muscles, passive viscoelasticity and body taper conspire to create neuromechanical phase lags in anguilliform swimmers.
    McMillen T; Williams T; Holmes P
    PLoS Comput Biol; 2008 Aug; 4(8):e1000157. PubMed ID: 18769734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Passive force and viscoelastic properties of single fibers in human aging muscles.
    Lim JY; Choi SJ; Widrick JJ; Phillips EM; Frontera WR
    Eur J Appl Physiol; 2019 Oct; 119(10):2339-2348. PubMed ID: 31468173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constituent-based quasi-linear viscoelasticity: a revised quasi-linear modelling framework to capture nonlinear viscoelasticity in arteries.
    Giudici A; van der Laan KWF; van der Bruggen MM; Parikh S; Berends E; Foulquier S; Delhaas T; Reesink KD; Spronck B
    Biomech Model Mechanobiol; 2023 Oct; 22(5):1607-1623. PubMed ID: 37129690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical predictions of the effects of force transmission by desmin on intersarcomere dynamics.
    Meyer GA; Kiss B; Ward SR; Morgan DL; Kellermayer MS; Lieber RL
    Biophys J; 2010 Jan; 98(2):258-66. PubMed ID: 20338847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Force-sharing between cat soleus and gastrocnemius muscles during walking: explanations based on electrical activity, properties, and kinematics.
    Prilutsky BI; Herzog W; Allinger TL
    J Biomech; 1994 Oct; 27(10):1223-35. PubMed ID: 7962010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.