These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 24360452)
1. Wine authenticity verification as a forensic problem: an application of likelihood ratio test to label verification. Martyna A; Zadora G; Stanimirova I; Ramos D Food Chem; 2014 May; 150():287-95. PubMed ID: 24360452 [TBL] [Abstract][Full Text] [Related]
2. A likelihood ratio model for the determination of the geographical origin of olive oil. Własiuk P; Martyna A; Zadora G Anal Chim Acta; 2015 Jan; 853():187-199. PubMed ID: 25467458 [TBL] [Abstract][Full Text] [Related]
3. Origin verification of French red wines using isotope and elemental analyses coupled with chemometrics. Wu H; Lin G; Tian L; Yan Z; Yi B; Bian X; Jin B; Xie L; Zhou H; Rogers KM Food Chem; 2021 Mar; 339():127760. PubMed ID: 32860996 [TBL] [Abstract][Full Text] [Related]
4. Targeted and nontargeted wine analysis by (1)h NMR spectroscopy combined with multivariate statistical analysis. Differentiation of important parameters: grape variety, geographical origin, year of vintage. Godelmann R; Fang F; Humpfer E; Schütz B; Bansbach M; Schäfer H; Spraul M J Agric Food Chem; 2013 Jun; 61(23):5610-9. PubMed ID: 23682581 [TBL] [Abstract][Full Text] [Related]
5. Classification of German white wines with certified brand of origin by multielement quantitation and pattern recognition techniques. Castiñeira Gómez Mdel M; Feldmann I; Jakubowski N; Andersson JT J Agric Food Chem; 2004 May; 52(10):2962-74. PubMed ID: 15137841 [TBL] [Abstract][Full Text] [Related]
6. Ochratoxin a contamination in italian wine samples and evaluation of the exposure in the italian population. Brera C; Debegnach F; Minardi V; Prantera E; Pannunzi E; Faleo S; de Santis B; Miraglia M J Agric Food Chem; 2008 Nov; 56(22):10611-8. PubMed ID: 18939845 [TBL] [Abstract][Full Text] [Related]
7. Authenticity of Cypriot sweet wine Commandaria using FT-IR and chemometrics. Ioannou-Papayianni E; Kokkinofta RI; Theocharis CR J Food Sci; 2011 Apr; 76(3):C420-7. PubMed ID: 21535809 [TBL] [Abstract][Full Text] [Related]
8. Low levels of ochratocin A in wines from Piedmont. Spadaro D; Ciavorella A; Lore A; Garibaldi A; Gullino ML Commun Agric Appl Biol Sci; 2007; 72(2):327-32. PubMed ID: 18399460 [TBL] [Abstract][Full Text] [Related]
9. Potential food allergens in wine: double-blind, placebo-controlled trial and basophil activation analysis. Rolland JM; Apostolou E; Deckert K; de Leon MP; Douglass JA; Glaspole IN; Bailey M; Stockley CS; O'Hehir RE Nutrition; 2006 Sep; 22(9):882-8. PubMed ID: 16928473 [TBL] [Abstract][Full Text] [Related]
10. Development of a rapid "fingerprinting" system for wine authenticity by mid-infrared spectroscopy. Bevin CJ; Fergusson AJ; Perry WB; Janik LJ; Cozzolino D J Agric Food Chem; 2006 Dec; 54(26):9713-8. PubMed ID: 17177491 [TBL] [Abstract][Full Text] [Related]
11. Analysis of lead isotopic ratios of glass objects with the aim of comparing them for forensic purposes. Martyna A; Sjastad KE; Zadora G; Ramos D Talanta; 2013 Feb; 105():158-66. PubMed ID: 23598003 [TBL] [Abstract][Full Text] [Related]
12. Differentiation of Chinese rice wines from different wineries based on mineral elemental fingerprinting. Shen F; Wu J; Ying Y; Li B; Jiang T Food Chem; 2013 Dec; 141(4):4026-30. PubMed ID: 23993580 [TBL] [Abstract][Full Text] [Related]
13. Multi-element analysis of South African wines by ICP-MS and their classification according to geographical origin. Coetzee PP; Steffens FE; Eiselen RJ; Augustyn OP; Balcaen L; Vanhaecke F J Agric Food Chem; 2005 Jun; 53(13):5060-6. PubMed ID: 15969475 [TBL] [Abstract][Full Text] [Related]
14. Geographic classification of spanish and Australian tempranillo red wines by visible and near-infrared spectroscopy combined with multivariate analysis. Liu L; Cozzolino D; Cynkar WU; Gishen M; Colby CB J Agric Food Chem; 2006 Sep; 54(18):6754-9. PubMed ID: 16939336 [TBL] [Abstract][Full Text] [Related]
15. Determination of cadmium in wine by electrothermal atomic absorption spectrometry. Cvetković J; Arpadjan S; Karadjova I; Stafilov T Acta Pharm; 2006 Mar; 56(1):69-77. PubMed ID: 16613736 [TBL] [Abstract][Full Text] [Related]
16. Characterization of wines by nuclear magnetic resonance: a work study on wines from the Basilicata region in Italy. Viggiani L; Morelli MA J Agric Food Chem; 2008 Sep; 56(18):8273-9. PubMed ID: 18693739 [TBL] [Abstract][Full Text] [Related]
17. Information-theoretical assessment of the performance of likelihood ratio computation methods. Ramos D; Gonzalez-Rodriguez J; Zadora G; Aitken C J Forensic Sci; 2013 Nov; 58(6):1503-18. PubMed ID: 23879526 [TBL] [Abstract][Full Text] [Related]
18. Use of Fourier transform infrared spectroscopy to create models forecasting the tartaric stability of wines. Malacarne M; Bergamo L; Bertoldi D; Nicolini G; Larcher R Talanta; 2013 Dec; 117():505-10. PubMed ID: 24209373 [TBL] [Abstract][Full Text] [Related]
19. High-precision 87Sr/86Sr analyses in wines and their use as a geological fingerprint for tracing geographic provenance. Marchionni S; Braschi E; Tommasini S; Bollati A; Cifelli F; Mulinacci N; Mattei M; Conticelli S J Agric Food Chem; 2013 Jul; 61(28):6822-31. PubMed ID: 23796314 [TBL] [Abstract][Full Text] [Related]
20. Principal component and linear discriminant analyses of free amino acids and biogenic amines in hungarian wines. Héberger K; Csomós E; Simon-Sarkadi L J Agric Food Chem; 2003 Dec; 51(27):8055-60. PubMed ID: 14690396 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]