BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 24360648)

  • 21. Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis.
    Khafipour E; Li S; Plaizier JC; Krause DO
    Appl Environ Microbiol; 2009 Nov; 75(22):7115-24. PubMed ID: 19783747
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Different restriction and modification phenotypes in ruminal lactate-utilizing bacteria.
    Piknova M; Filova M; Javorsky P; Pristas P
    FEMS Microbiol Lett; 2004 Jul; 236(1):91-5. PubMed ID: 15212796
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biohydrogen production by mixed culture of Megasphaera elsdenii with lactic acid bacteria as Lactate-driven dark fermentation.
    Ohnishi A; Hasegawa Y; Fujimoto N; Suzuki M
    Bioresour Technol; 2022 Jan; 343():126076. PubMed ID: 34601026
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The influence of
    DeClerck JC; Reeves NR; Miller MF; Johnson BJ; Ducharme GA; Rathmann RJ
    Transl Anim Sci; 2020 Jan; 4(1):194-205. PubMed ID: 32704979
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of grain, fructose, and histidine on ruminal pH and fermentation products during an induced subacute acidosis protocol.
    Golder HM; Celi P; Rabiee AR; Heuer C; Bramley E; Miller DW; King R; Lean IJ
    J Dairy Sci; 2012 Apr; 95(4):1971-82. PubMed ID: 22459843
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of a bacterial probiotic on ruminal pH and volatile fatty acids during subacute ruminal acidosis (SARA) in cattle.
    Goto H; Qadis AQ; Kim YH; Ikuta K; Ichijo T; Sato S
    J Vet Med Sci; 2016 Nov; 78(10):1595-1600. PubMed ID: 27430197
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prevotella bryantii 25A used as a probiotic in early-lactation dairy cows: effect on ruminal fermentation characteristics, milk production, and milk composition.
    Chiquette J; Allison MJ; Rasmussen MA
    J Dairy Sci; 2008 Sep; 91(9):3536-43. PubMed ID: 18765612
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of an extract of plant flavonoids (Bioflavex) on rumen fermentation and performance in heifers fed high-concentrate diets.
    Balcells J; Aris A; Serrano A; Seradj AR; Crespo J; Devant M
    J Anim Sci; 2012 Dec; 90(13):4975-84. PubMed ID: 22829622
    [TBL] [Abstract][Full Text] [Related]  

  • 29.
    Chen L; Shen Y; Wang C; Ding L; Zhao F; Wang M; Fu J; Wang H
    Front Microbiol; 2019; 10():162. PubMed ID: 30792704
    [No Abstract]   [Full Text] [Related]  

  • 30. Regulation of lactate metabolism in the rumen.
    Counotte GH; Prins RA
    Vet Res Commun; 1981 Dec; 5(2):101-15. PubMed ID: 7048723
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The enrichment of a ruminal bacterium (Megasphaera elsdenii YJ-4) that produces the trans-10, cis-12 isomer of conjugated linoleic acid.
    Kim YJ; Liu RH; Rychlik JL; Russell JB
    J Appl Microbiol; 2002; 92(5):976-82. PubMed ID: 11972704
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lipopolysaccharide Stimulates the Growth of Bacteria That Contribute to Ruminal Acidosis.
    Dai X; Hackmann TJ; Lobo RR; Faciola AP
    Appl Environ Microbiol; 2020 Feb; 86(4):. PubMed ID: 31811042
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lactic acid-utilizing bacteria in ruminal fluid of a steer adapted from hay feeding to a high-grain ration.
    Huber TL; Cooley JH; Goetsch DD; Das NK
    Am J Vet Res; 1976 May; 37(5):611-3. PubMed ID: 1275348
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome sequence of the ruminal bacterium Megasphaera elsdenii.
    Marx H; Graf AB; Tatto NE; Thallinger GG; Mattanovich D; Sauer M
    J Bacteriol; 2011 Oct; 193(19):5578-9. PubMed ID: 21914887
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The relationship between rumen acidosis resistance and expression of genes involved in regulation of intracellular pH and butyrate metabolism of ruminal epithelial cells in steers.
    Schlau N; Guan LL; Oba M
    J Dairy Sci; 2012 Oct; 95(10):5866-75. PubMed ID: 22863095
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differing effects of 2 active dried yeast (Saccharomyces cerevisiae) strains on ruminal acidosis and methane production in nonlactating dairy cows.
    Chung YH; Walker ND; McGinn SM; Beauchemin KA
    J Dairy Sci; 2011 May; 94(5):2431-9. PubMed ID: 21524535
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Valerate production by Megasphaera elsdenii isolated from pig feces.
    Yoshikawa S; Araoka R; Kajihara Y; Ito T; Miyamoto H; Kodama H
    J Biosci Bioeng; 2018 May; 125(5):519-524. PubMed ID: 29331526
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The definition of acidosis in dairy herds predominantly fed on pasture and concentrates.
    Bramley E; Lean IJ; Fulkerson WJ; Stevenson MA; Rabiee AR; Costa ND
    J Dairy Sci; 2008 Jan; 91(1):308-21. PubMed ID: 18096953
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of Megasphaera elsdenii supplementation on rumen fermentation, production performance, carcass traits and health of ruminants: a meta-analysis.
    Susanto I; Wiryawan KG; Suharti S; Retnani Y; Zahera R; Jayanegara A
    Anim Biosci; 2023 Jun; 36(6):879-890. PubMed ID: 36634661
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Systemic effects of ruminal acidosis following ruminal drinking in dairy calves. A retrospective analysis of 293 cases].
    Gentile A; Rademacher G; Seemann G; Klee W
    Tierarztl Prax Ausg G Grosstiere Nutztiere; 1998 Jul; 26(4):205-9. PubMed ID: 9710922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.