BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 24360812)

  • 1. Microscale immobilized enzyme reactors in proteomics: latest developments.
    Safdar M; Spross J; Jänis J
    J Chromatogr A; 2014 Jan; 1324():1-10. PubMed ID: 24360812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and application of immobilized enzymatic reactors for consecutive digestion with two enzymes.
    Wang B; Shangguan L; Wang S; Zhang L; Zhang W; Liu F
    J Chromatogr A; 2016 Dec; 1477():22-29. PubMed ID: 27884426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient proteolysis using a regenerable metal-ion chelate immobilized enzyme reactor supported on organic-inorganic hybrid silica monolith.
    Ma J; Hou C; Liang Y; Wang T; Liang Z; Zhang L; Zhang Y
    Proteomics; 2011 Mar; 11(5):991-5. PubMed ID: 21280225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrophilic monolith based immobilized enzyme reactors in capillary and on microchip for high-throughput proteomic analysis.
    Liang Y; Tao D; Ma J; Sun L; Liang Z; Zhang L; Zhang Y
    J Chromatogr A; 2011 May; 1218(20):2898-905. PubMed ID: 21450299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid and efficient proteolysis through laser-assisted immobilized enzyme reactors.
    Zhang P; Gao M; Zhu S; Lei J; Zhang X
    J Chromatogr A; 2011 Nov; 1218(47):8567-71. PubMed ID: 22024345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of high efficiency and low carry-over immobilized enzymatic reactor with methacrylic acid-silica hybrid monolith as matrix for on-line protein digestion.
    Yuan H; Zhang L; Zhang Y
    J Chromatogr A; 2014 Dec; 1371():48-57. PubMed ID: 25456586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immobilized monolithic enzymatic reactor and its application for analysis of in-vitro fertilization media samples.
    Chen WQ; Obermayr P; Černigoj U; Vidič J; Panić-Janković T; Mitulović G
    Electrophoresis; 2017 Nov; 38(22-23):2957-2964. PubMed ID: 28613010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hydrophilic immobilized trypsin reactor with N-vinyl-2-pyrrolidinone modified polymer microparticles as matrix for highly efficient protein digestion with low peptide residue.
    Jiang H; Yuan H; Liang Y; Xia S; Zhao Q; Wu Q; Zhang L; Liang Z; Zhang Y
    J Chromatogr A; 2012 Jul; 1246():111-6. PubMed ID: 22446077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and efficient proteolysis for proteomic analysis by protease-immobilized microreactor.
    Yamaguchi H; Miyazaki M; Honda T; Briones-Nagata MP; Arima K; Maeda H
    Electrophoresis; 2009 Sep; 30(18):3257-64. PubMed ID: 19722210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparing a metal-ion chelated immobilized enzyme reactor based on the polyacrylamide monolith grafted with polyethylenimine for a facile regeneration and high throughput tryptic digestion in proteomics.
    Wu S; Zhang L; Yang K; Liang Z; Zhang L; Zhang Y
    Anal Bioanal Chem; 2012 Jan; 402(2):703-10. PubMed ID: 22038592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A capillary monolithic trypsin reactor for efficient protein digestion in online and offline coupling to ESI and MALDI mass spectrometry.
    Spross J; Sinz A
    Anal Chem; 2010 Feb; 82(4):1434-43. PubMed ID: 20099804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A one-step preparation method of monolithic enzyme reactor for highly efficient sample preparation coupled to mass spectrometry-based proteomics studies.
    Jiang S; Zhang Z; Li L
    J Chromatogr A; 2015 Sep; 1412():75-81. PubMed ID: 26300481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards automation in protein digestion: Development of a monolithic trypsin immobilized reactor for highly efficient on-line digestion and analysis.
    Naldi M; Černigoj U; Štrancar A; Bartolini M
    Talanta; 2017 May; 167():143-157. PubMed ID: 28340705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immobilized trypsin systems coupled on-line to separation methods: recent developments and analytical applications.
    Massolini G; Calleri E
    J Sep Sci; 2005 Jan; 28(1):7-21. PubMed ID: 15688626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient enzyme reactors containing trypsin and endoproteinase LysC immobilized on porous polymer monolith coupled to MS suitable for analysis of antibodies.
    Krenkova J; Lacher NA; Svec F
    Anal Chem; 2009 Mar; 81(5):2004-12. PubMed ID: 19186936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of automated proteomic workflows utilizing silicon-based coupling agents.
    Frey C; Arad M; Ku K; Hare R; Balagtas R; Shi Y; Moon KM; Foster LJ; Ghafourifar G
    J Proteomics; 2024 Jul; 303():105215. PubMed ID: 38843981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microscale enzyme reactors comprising gold nanoparticles with immobilized trypsin for efficient protein digestion.
    Safdar M; Spross J; Jänis J
    J Mass Spectrom; 2013 Dec; 48(12):1281-4. PubMed ID: 24338882
    [No Abstract]   [Full Text] [Related]  

  • 18. Digital microfluidic hydrogel microreactors for proteomics.
    Luk VN; Fiddes LK; Luk VM; Kumacheva E; Wheeler AR
    Proteomics; 2012 May; 12(9):1310-8. PubMed ID: 22589180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel organic-inorganic hybrid monolith for trypsin immobilization.
    Wu S; Ma J; Yang K; Liu J; Liang Z; Zhang L; Zhang Y
    Sci China Life Sci; 2011 Jan; 54(1):54-9. PubMed ID: 21253871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophilic immobilized trypsin reactor with magnetic graphene oxide as support for high efficient proteome digestion.
    Jiang B; Yang K; Zhao Q; Wu Q; Liang Z; Zhang L; Peng X; Zhang Y
    J Chromatogr A; 2012 Sep; 1254():8-13. PubMed ID: 22871380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.