BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 24360825)

  • 21. Biotransformation XLVII: transformations of 5-ene steroids in Fusarium culmorum culture.
    Kołek T
    J Steroid Biochem Mol Biol; 1999 Nov; 71(1-2):83-90. PubMed ID: 10619360
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Steroid modification by filamentous fungus Drechslera sp.: Focus on 7-hydroxylase and 17β-hydroxysteroid dehydrogenase activities.
    Kollerov V; Shutov A; Kazantsev A; Donova M
    Fungal Biol; 2022 Jan; 126(1):91-100. PubMed ID: 34930562
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microbial transformation of ginsenoside-Rg₁ by Absidia coerulea and the reversal activity of the metabolites towards multi-drug resistant tumor cells.
    Liu X; Qiao L; Xie D; Zhang Y; Zou J; Chen X; Dai J
    Fitoterapia; 2011 Dec; 82(8):1313-7. PubMed ID: 21946057
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Baeyer-Villiger oxidation of some C(19) steroids by Penicillium lanosocoeruleum.
    Świzdor A
    Molecules; 2013 Nov; 18(11):13812-22. PubMed ID: 24213656
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cyp7b, a novel brain cytochrome P450, catalyzes the synthesis of neurosteroids 7alpha-hydroxy dehydroepiandrosterone and 7alpha-hydroxy pregnenolone.
    Rose KA; Stapleton G; Dott K; Kieny MP; Best R; Schwarz M; Russell DW; Björkhem I; Seckl J; Lathe R
    Proc Natl Acad Sci U S A; 1997 May; 94(10):4925-30. PubMed ID: 9144166
    [TBL] [Abstract][Full Text] [Related]  

  • 26. cyp7b1 catalyses the 7alpha-hydroxylation of dehydroepiandrosterone and 25-hydroxycholesterol in rat prostate.
    Martin C; Bean R; Rose K; Habib F; Seckl J
    Biochem J; 2001 Apr; 355(Pt 2):509-15. PubMed ID: 11284740
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microbial oxidation of dehydroepiandrosterone and related compounds.
    Iida M; Matsuhashi K; Nakayama T
    Z Allg Mikrobiol; 1975; 15(3):181-7. PubMed ID: 127427
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Steroid hydroxylations with Botryodiplodia malorum and Colletotrichum lini.
    Romano A; Romano D; Ragg E; Costantino F; Lenna R; Gandolfi R; Molinari F
    Steroids; 2006 Jun; 71(6):429-34. PubMed ID: 16580036
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancement of steroid hydroxylation yield from dehydroepiandrosterone by cyclodextrin complexation technique.
    Wu Y; Li H; Lu ZM; Li H; Rao ZM; Geng Y; Shi JS; Xu ZH
    Steroids; 2014 Jun; 84():70-7. PubMed ID: 24667208
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biotransformation of tetrahydro-alpha-santonins by Absidia coerulea.
    Yang L; Dai J
    Nat Prod Res; 2008 Apr; 22(6):499-506. PubMed ID: 18415857
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biotransformation of steroids by entomopathogenic strains of Isaria farinosa.
    Kozłowska E; Hoc N; Sycz J; Urbaniak M; Dymarska M; Grzeszczuk J; Kostrzewa-Susłow E; Stępień Ł; Pląskowska E; Janeczko T
    Microb Cell Fact; 2018 May; 17(1):71. PubMed ID: 29753319
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydroxylative activity of Aspergillus niger towards androst-4-ene and androst-5-ene steroids.
    Świzdor A; Panek A; Milecka-Tronina N
    Steroids; 2017 Oct; 126():101-106. PubMed ID: 28827070
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of 3beta-hydroxy-androsta-5,7-dien-17-one from 3beta-hydroxyandrost-5-en-17-one via microbial 7alpha-hydroxylation.
    Lobastova TG; Khomutov SM; Vasiljeva LL; Lapitskaya MA; Pivnitsky KK; Donova MV
    Steroids; 2009 Feb; 74(2):233-7. PubMed ID: 19071148
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biohydroxylation of 7-oxo-DHEA, a natural metabolite of DHEA, resulting in formation of new metabolites of potential pharmaceutical interest.
    Świzdor A; Panek A; Milecka-Tronina N
    Chem Biol Drug Des; 2016 Dec; 88(6):844-849. PubMed ID: 27369457
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A native steroid hormone derivative triggers the resolution of inflammation.
    Niro S; Hennebert O; Morfin R
    Horm Mol Biol Clin Investig; 2010 Jan; 1(1):11-9. PubMed ID: 25961967
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbial introduction of a 16 alpha-hydroxyl function into the steroid nucleus.
    Iida M; Shinozuka T; Iizuka H
    Z Allg Mikrobiol; 1979; 19(8):557-61. PubMed ID: 161833
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transformation of 8-prenylnaringenin by Absidia coerulea and Beauveria bassiana.
    Bartmańska A; Tronina T; Huszcza E
    Bioorg Med Chem Lett; 2012 Oct; 22(20):6451-3. PubMed ID: 22975300
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of supercritical fluids on C11beta-hydroxylation activity of Absidia coerulea.
    Zhang B; Zhu H; Liu X
    Biotechnol Prog; 2004; 20(6):1885-7. PubMed ID: 15575728
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selective Microbial Conversion of DHEA into 7α-OH-DHEA.
    Kollerov VV; Shutov AA; Donova MV
    Methods Mol Biol; 2023; 2704():269-275. PubMed ID: 37642850
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemical and biochemical approaches to the production of 7-hydroxylated C19-steroids.
    Ferroud C; Revial G; Morfin R
    Horm Mol Biol Clin Investig; 2012 Jun; 10(3):293-9. PubMed ID: 25436687
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.