These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
395 related articles for article (PubMed ID: 24360846)
1. pH-dependent leaching of constituents of potential concern from concrete materials containing coal combustion fly ash. Kosson DS; Garrabrants AC; DeLapp R; van der Sloot HA Chemosphere; 2014 May; 103():140-7. PubMed ID: 24360846 [TBL] [Abstract][Full Text] [Related]
2. Effect of coal combustion fly ash use in concrete on the mass transport release of constituents of potential concern. Garrabrants AC; Kosson DS; DeLapp R; van der Sloot HA Chemosphere; 2014 May; 103():131-9. PubMed ID: 24359922 [TBL] [Abstract][Full Text] [Related]
3. Leaching characteristics of toxic constituents from coal fly ash mixed soils under the influence of pH. Komonweeraket K; Cetin B; Benson CH; Aydilek AH; Edil TB Waste Manag; 2015 Apr; 38():174-84. PubMed ID: 25555664 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of heavy metal leaching from coal ash-versus conventional concrete monoliths and debris. Gwenzi W; Mupatsi NM Waste Manag; 2016 Mar; 49():114-123. PubMed ID: 26764133 [TBL] [Abstract][Full Text] [Related]
5. Wide-scale utilization of MSWI fly ashes in cement production and its impact on average heavy metal contents in cements: The case of Austria. Lederer J; Trinkel V; Fellner J Waste Manag; 2017 Feb; 60():247-258. PubMed ID: 27815031 [TBL] [Abstract][Full Text] [Related]
6. Design of a leaching test framework for coal fly ash accounting for environmental conditions. Zandi M; Russell NV Environ Monit Assess; 2007 Aug; 131(1-3):509-26. PubMed ID: 17171257 [TBL] [Abstract][Full Text] [Related]
7. New methodology for assessing the environmental burden of cement mortars with partial replacement of coal bottom ash and fly ash. Menéndez E; Álvaro AM; Hernández MT; Parra JL J Environ Manage; 2014 Jan; 133():275-83. PubMed ID: 24412590 [TBL] [Abstract][Full Text] [Related]
8. High fire resistance in blocks containing coal combustion fly ashes and bottom ash. García Arenas C; Marrero M; Leiva C; Solís-Guzmán J; Vilches Arenas LF Waste Manag; 2011 Aug; 31(8):1783-9. PubMed ID: 21511456 [TBL] [Abstract][Full Text] [Related]
9. Leaching test procedure for assessing the compliance of the chemical and environmental requirements of hardened woody biomass fly ash cement mixtures. Berra M; Ippolito NM; Mangialardi T; Paolini AE; Piga L Waste Manag; 2019 May; 90():10-16. PubMed ID: 31088665 [TBL] [Abstract][Full Text] [Related]
10. Leaching characteristics of selected South African fly ashes: effect of pH on the release of major and trace species. Gitari WM; Fatoba OO; Petrik LF; Vadapalli VR J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Feb; 44(2):206-20. PubMed ID: 19123102 [TBL] [Abstract][Full Text] [Related]
11. Natural weathering in dry disposed ash dump: Insight from chemical, mineralogical and geochemical analysis of fresh and unsaturated drilled cores. Akinyemi SA; Akinlua A; Gitari WM; Khuse N; Eze P; Akinyeye RO; Petrik LF J Environ Manage; 2012 Jul; 102():96-107. PubMed ID: 22446137 [TBL] [Abstract][Full Text] [Related]
12. Experimental assessment of cement hydration and leaching characteristics for waste-to-energy bottom ash mixed with concrete. An J; Nam BH; Cho BH; Eun J J Air Waste Manag Assoc; 2021 Jul; 71(7):906-922. PubMed ID: 33818306 [TBL] [Abstract][Full Text] [Related]
13. Stabilization/solidification of fly ashes and concrete production from bottom and circulating ashes produced in a power plant working under mono and co-combustion conditions. Barbosa R; Lapa N; Lopes H; Gulyurtlu I; Mendes B Waste Manag; 2011; 31(9-10):2009-19. PubMed ID: 21605964 [TBL] [Abstract][Full Text] [Related]
14. Recycling of biomass and coal fly ash as cement replacement material and its effect on hydration and carbonation of concrete. Teixeira ER; Camões A; Branco FG; Aguiar JB; Fangueiro R Waste Manag; 2019 Jul; 94():39-48. PubMed ID: 31279394 [TBL] [Abstract][Full Text] [Related]
15. Utilization of municipal solid waste incineration (MSWI) fly ash in blended cement Part 1: Processing and characterization of MSWI fly ash. Aubert JE; Husson B; Sarramone N J Hazard Mater; 2006 Aug; 136(3):624-31. PubMed ID: 16442718 [TBL] [Abstract][Full Text] [Related]
16. Leaching behavior of heavy metals from municipal solid wastes incineration (MSWI) fly ash used in concrete. Shi HS; Kan LL J Hazard Mater; 2009 May; 164(2-3):750-4. PubMed ID: 18838222 [TBL] [Abstract][Full Text] [Related]
17. Leaching behavior of sustainable concrete made with coal ash wastes as replacement of cement and sand. Rafieizonooz M; Kim JJ; Khankhaje E; Rezania S Environ Sci Pollut Res Int; 2024 Nov; 31(52):61437-61450. PubMed ID: 39422862 [TBL] [Abstract][Full Text] [Related]
18. Speciation of major and trace elements leached from coal fly ash and the kinetics involved. Hailu SL; McCrindle RI; Seopela MP; Combrinck S J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(12):1186-1196. PubMed ID: 31271099 [TBL] [Abstract][Full Text] [Related]
19. Distribution and leaching characteristics of trace elements in ashes as a function of different waste fuels and incineration technologies. Saqib N; Bäckström M J Environ Sci (China); 2015 Oct; 36():9-21. PubMed ID: 26456601 [TBL] [Abstract][Full Text] [Related]
20. Modeling batch leaching behavior of arsenic and selenium from bituminous coal fly ashes. Su T; Wang J Chemosphere; 2011 Nov; 85(8):1368-74. PubMed ID: 21880348 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]