These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
583 related articles for article (PubMed ID: 24361277)
41. Microbial synthesis of medium-chain chemicals from renewables. Sarria S; Kruyer NS; Peralta-Yahya P Nat Biotechnol; 2017 Dec; 35(12):1158-1166. PubMed ID: 29220020 [TBL] [Abstract][Full Text] [Related]
42. Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products. De Bhowmick G; Sarmah AK; Sen R Bioresour Technol; 2018 Jan; 247():1144-1154. PubMed ID: 28993055 [TBL] [Abstract][Full Text] [Related]
43. Biohydrogen production from lignocellulosic feedstock. Cheng CL; Lo YC; Lee KS; Lee DJ; Lin CY; Chang JS Bioresour Technol; 2011 Sep; 102(18):8514-23. PubMed ID: 21570833 [TBL] [Abstract][Full Text] [Related]
44. A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. Hasunuma T; Okazaki F; Okai N; Hara KY; Ishii J; Kondo A Bioresour Technol; 2013 May; 135():513-22. PubMed ID: 23195654 [TBL] [Abstract][Full Text] [Related]
45. Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Alonso DM; Wettstein SG; Dumesic JA Chem Soc Rev; 2012 Dec; 41(24):8075-98. PubMed ID: 22872312 [TBL] [Abstract][Full Text] [Related]
46. Review on the production of medium and small chain fatty acids through waste valorization and CO Venkateswar Reddy M; Kumar G; Mohanakrishna G; Shobana S; Al-Raoush RI Bioresour Technol; 2020 Aug; 309():123400. PubMed ID: 32371319 [TBL] [Abstract][Full Text] [Related]
47. Metabolic engineering of biosynthetic pathway for production of renewable biofuels. Singh V; Mani I; Chaudhary DK; Dhar PK Appl Biochem Biotechnol; 2014 Feb; 172(3):1158-71. PubMed ID: 24197521 [TBL] [Abstract][Full Text] [Related]
48. Renewable biohydrogen production from lignocellulosic biomass using fermentation and integration of systems with other energy generation technologies. Bhatia SK; Jagtap SS; Bedekar AA; Bhatia RK; Rajendran K; Pugazhendhi A; Rao CV; Atabani AE; Kumar G; Yang YH Sci Total Environ; 2021 Apr; 765():144429. PubMed ID: 33385808 [TBL] [Abstract][Full Text] [Related]
49. Renewable fatty acid ester production in Clostridium. Feng J; Zhang J; Ma Y; Feng Y; Wang S; Guo N; Wang H; Wang P; Jiménez-Bonilla P; Gu Y; Zhou J; Zhang ZT; Cao M; Jiang D; Wang S; Liu XW; Shao Z; Borovok I; Huang H; Wang Y Nat Commun; 2021 Jul; 12(1):4368. PubMed ID: 34272383 [TBL] [Abstract][Full Text] [Related]
50. Bioconversion of biomass waste into high value chemicals. Cho EJ; Trinh LTP; Song Y; Lee YG; Bae HJ Bioresour Technol; 2020 Feb; 298():122386. PubMed ID: 31740245 [TBL] [Abstract][Full Text] [Related]
51. Harnessing Yeast Peroxisomes for Biosynthesis of Fatty-Acid-Derived Biofuels and Chemicals with Relieved Side-Pathway Competition. Zhou YJ; Buijs NA; Zhu Z; Gómez DO; Boonsombuti A; Siewers V; Nielsen J J Am Chem Soc; 2016 Nov; 138(47):15368-15377. PubMed ID: 27753483 [TBL] [Abstract][Full Text] [Related]
52. Non-sterile fermentations for the economical biochemical conversion of renewable feedstocks. Chen Z; Wan C Biotechnol Lett; 2017 Dec; 39(12):1765-1777. PubMed ID: 28905262 [TBL] [Abstract][Full Text] [Related]
53. Metabolic engineering for production of biorenewable fuels and chemicals: contributions of synthetic biology. Jarboe LR; Zhang X; Wang X; Moore JC; Shanmugam KT; Ingram LO J Biomed Biotechnol; 2010; 2010():761042. PubMed ID: 20414363 [TBL] [Abstract][Full Text] [Related]
54. Biofuels: biomolecular engineering fundamentals and advances. Li H; Cann AF; Liao JC Annu Rev Chem Biomol Eng; 2010; 1():19-36. PubMed ID: 22432571 [TBL] [Abstract][Full Text] [Related]
55. Single cell oil production from low-cost substrates: the possibility and potential of its industrialization. Huang C; Chen XF; Xiong L; Chen XD; Ma LL; Chen Y Biotechnol Adv; 2013; 31(2):129-39. PubMed ID: 22960618 [TBL] [Abstract][Full Text] [Related]
56. Unlocking the potential of insect and ruminant host symbionts for recycling of lignocellulosic carbon with a biorefinery approach: a review. Rajeswari G; Jacob S; Chandel AK; Kumar V Microb Cell Fact; 2021 May; 20(1):107. PubMed ID: 34044834 [TBL] [Abstract][Full Text] [Related]
57. Preparation and evaluation of lignocellulosic biomass hydrolysates for growth by ethanologenic yeasts. Zha Y; Slomp R; van Groenestijn J; Punt PJ Methods Mol Biol; 2012; 834():245-59. PubMed ID: 22144364 [TBL] [Abstract][Full Text] [Related]
58. Integration of renewable deep eutectic solvents with engineered biomass to achieve a closed-loop biorefinery. Kim KH; Eudes A; Jeong K; Yoo CG; Kim CS; Ragauskas A Proc Natl Acad Sci U S A; 2019 Jul; 116(28):13816-13824. PubMed ID: 31235605 [TBL] [Abstract][Full Text] [Related]
59. Escherichia coli for biofuel production: bridging the gap from promise to practice. Huffer S; Roche CM; Blanch HW; Clark DS Trends Biotechnol; 2012 Oct; 30(10):538-45. PubMed ID: 22921756 [TBL] [Abstract][Full Text] [Related]
60. Feasibilities of consolidated bioprocessing microbes: from pretreatment to biofuel production. Parisutham V; Kim TH; Lee SK Bioresour Technol; 2014 Jun; 161():431-40. PubMed ID: 24745899 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]