These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 24361389)

  • 1. Learning Bayesian networks for clinical time series analysis.
    van der Heijden M; Velikova M; Lucas PJ
    J Biomed Inform; 2014 Apr; 48():94-105. PubMed ID: 24361389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of censoring on learning Bayesian networks in survival modelling.
    Stajduhar I; Dalbelo-Basić B; Bogunović N
    Artif Intell Med; 2009 Nov; 47(3):199-217. PubMed ID: 19833488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smooth Bayesian network model for the prediction of future high-cost patients with COPD.
    Lin S; Zhang Q; Chen F; Luo L; Chen L; Zhang W
    Int J Med Inform; 2019 Jun; 126():147-155. PubMed ID: 31029256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning algorithms and forced oscillation measurements applied to the automatic identification of chronic obstructive pulmonary disease.
    Amaral JL; Lopes AJ; Jansen JM; Faria AC; Melo PL
    Comput Methods Programs Biomed; 2012 Mar; 105(3):183-93. PubMed ID: 22018532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison between discrete and continuous time Bayesian networks in learning from clinical time series data with irregularity.
    Liu M; Stella F; Hommersom A; Lucas PJF; Boer L; Bischoff E
    Artif Intell Med; 2019 Apr; 95():104-117. PubMed ID: 30683464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the interplay of machine learning and background knowledge in image interpretation by Bayesian networks.
    Velikova M; Lucas PJ; Samulski M; Karssemeijer N
    Artif Intell Med; 2013 Jan; 57(1):73-86. PubMed ID: 23395008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prognostic Bayesian networks I: rationale, learning procedure, and clinical use.
    Verduijn M; Peek N; Rosseel PM; de Jonge E; de Mol BA
    J Biomed Inform; 2007 Dec; 40(6):609-18. PubMed ID: 17704008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploiting missing clinical data in Bayesian network modeling for predicting medical problems.
    Lin JH; Haug PJ
    J Biomed Inform; 2008 Feb; 41(1):1-14. PubMed ID: 17625974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. miniTUBA: medical inference by network integration of temporal data using Bayesian analysis.
    Xiang Z; Minter RM; Bi X; Woolf PJ; He Y
    Bioinformatics; 2007 Sep; 23(18):2423-32. PubMed ID: 17644819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [How exactly can we predict the prognosis of COPD].
    Atiş S; Kanik A; Ozgür ES; Eker S; Tümkaya M; Ozge C
    Tuberk Toraks; 2009; 57(3):289-97. PubMed ID: 19787468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning for improved pathological staging of prostate cancer: a performance comparison on a range of classifiers.
    Regnier-Coudert O; McCall J; Lothian R; Lam T; McClinton S; N'dow J
    Artif Intell Med; 2012 May; 55(1):25-35. PubMed ID: 22206941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An autonomous mobile system for the management of COPD.
    van der Heijden M; Lucas PJ; Lijnse B; Heijdra YF; Schermer TR
    J Biomed Inform; 2013 Jun; 46(3):458-69. PubMed ID: 23500485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling temporal interactions with interval temporal bayesian networks for complex activity recognition.
    Zhang Y; Zhang Y; Swears E; Larios N; Wang Z; Ji Q
    IEEE Trans Pattern Anal Mach Intell; 2013 Oct; 35(10):2468-83. PubMed ID: 23969390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mobile-health system to manage chronic obstructive pulmonary disease patients at home.
    Ding H; Moodley Y; Kanagasingam Y; Karunanithi M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2178-81. PubMed ID: 23366354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting asthma exacerbations using artificial intelligence.
    Finkelstein J; Wood J
    Stud Health Technol Inform; 2013; 190():56-8. PubMed ID: 23823374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A system for automated general medical diagnosis using Bayesian networks.
    Zagorecki A; Orzechowski P; Hołownia K
    Stud Health Technol Inform; 2013; 192():461-5. PubMed ID: 23920597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of exacerbation episodes in chronic obstructive pulmonary disease patients.
    Dias A; Gorzelniak L; Schultz K; Wittmann M; Rudnik J; Jörres R; Horsch A
    Methods Inf Med; 2014; 53(2):108-14. PubMed ID: 24515082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of learning algorithms for Bayesian networks: a case study based on data from an emergency medical service.
    Acid S; de Campos LM; Fernández-Luna JM; Rodríguez S; María Rodríguez J; Luis Salcedo J
    Artif Intell Med; 2004 Mar; 30(3):215-32. PubMed ID: 15081073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fusion-based clinical decision support for disease diagnosis from endoscopic images.
    Zheng MM; Krishnan SM; Tjoa MP
    Comput Biol Med; 2005 Mar; 35(3):259-74. PubMed ID: 15582632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and evaluation of RapTAT: a machine learning system for concept mapping of phrases from medical narratives.
    Gobbel GT; Reeves R; Jayaramaraja S; Giuse D; Speroff T; Brown SH; Elkin PL; Matheny ME
    J Biomed Inform; 2014 Apr; 48():54-65. PubMed ID: 24316051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.