These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 24361426)

  • 1. Poly(amido-amine)-based hydrogels with tailored mechanical properties and degradation rates for tissue engineering.
    Martello F; Tocchio A; Tamplenizza M; Gerges I; Pistis V; Recenti R; Bortolin M; Del Fabbro M; Argentiere S; Milani P; Lenardi C
    Acta Biomater; 2014 Mar; 10(3):1206-15. PubMed ID: 24361426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel agmatine-containing poly(amidoamine) hydrogels as scaffolds for tissue engineering.
    Ferruti P; Bianchi S; Ranucci E; Chiellini F; Piras AM
    Biomacromolecules; 2005; 6(4):2229-35. PubMed ID: 16004467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel poly(amido-amine)-based hydrogels as scaffolds for tissue engineering.
    Ferruti P; Bianchi S; Ranucci E; Chiellini F; Caruso V
    Macromol Biosci; 2005 Jul; 5(7):613-22. PubMed ID: 16010695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RGD-mimetic poly(amidoamine) hydrogel for the fabrication of complex cell-laden micro constructs.
    Tocchio A; Martello F; Tamplenizza M; Rossi E; Gerges I; Milani P; Lenardi C
    Acta Biomater; 2015 May; 18():144-54. PubMed ID: 25724444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(N-isopropylacrylamide) hydrogels with interpenetrating multiwalled carbon nanotubes for cell sheet engineering.
    Chen YS; Tsou PC; Lo JM; Tsai HC; Wang YZ; Hsiue GH
    Biomaterials; 2013 Oct; 34(30):7328-34. PubMed ID: 23827188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photocrosslinked nanocomposite hydrogels from PEG and silica nanospheres: structural, mechanical and cell adhesion characteristics.
    Gaharwar AK; Rivera C; Wu CJ; Chan BK; Schmidt G
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1800-7. PubMed ID: 23827639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and analysis of degradation, mechanical and toxicity properties of poly(β-amino ester) degradable hydrogels.
    Hawkins AM; Milbrandt TA; Puleo DA; Hilt JZ
    Acta Biomater; 2011 May; 7(5):1956-64. PubMed ID: 21252001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic poly(amino acid) hydrogels with incorporated cell-adhesion peptides for tissue engineering.
    Studenovská H; Vodicka P; Proks V; Hlucilová J; Motlík J; Rypácek F
    J Tissue Eng Regen Med; 2010 Aug; 4(6):454-63. PubMed ID: 20084624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of stiffness effects of poly(amidoamine)-poly(n-isopropyl acrylamide) hydrogel on wound healing.
    Chen S; Shi J; Xu X; Ding J; Zhong W; Zhang L; Xing M; Zhang L
    Colloids Surf B Biointerfaces; 2016 Apr; 140():574-582. PubMed ID: 26628331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradable poly(amidoamine) hydrogels as scaffolds for in vitro culturing of peripheral nervous system cells.
    Mauro N; Manfredi A; Ranucci E; Procacci P; Laus M; Antonioli D; Mantovani C; Magnaghi V; Ferruti P
    Macromol Biosci; 2013 Mar; 13(3):332-47. PubMed ID: 23239646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, swelling behavior, and biocompatibility of novel physically cross-linked polyurethane-block-poly(glycerol methacrylate) hydrogels.
    Mequanint K; Patel A; Bezuidenhout D
    Biomacromolecules; 2006 Mar; 7(3):883-91. PubMed ID: 16529427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of biocompatible, UV-cured fumarated poly(ether-ester)-based tissue-engineering hydrogels.
    Akdemir ZS; Kayaman-Apohan N; Kahraman MV; Kuruca SE; Güngör A; Karadenizli S
    J Biomater Sci Polym Ed; 2011; 22(7):857-72. PubMed ID: 20566062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell-adhesive and mechanically tunable glucose-based biodegradable hydrogels.
    Shin H; Nichol JW; Khademhosseini A
    Acta Biomater; 2011 Jan; 7(1):106-14. PubMed ID: 20647064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentiation of cardiosphere-derived cells into a mature cardiac lineage using biodegradable poly(N-isopropylacrylamide) hydrogels.
    Li Z; Guo X; Matsushita S; Guan J
    Biomaterials; 2011 Apr; 32(12):3220-32. PubMed ID: 21296413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Network connectivity, mechanical properties and cell adhesion for hyaluronic acid/PEG hydrogels.
    Ouasti S; Donno R; Cellesi F; Sherratt MJ; Terenghi G; Tirelli N
    Biomaterials; 2011 Sep; 32(27):6456-70. PubMed ID: 21680016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-functional electrospun poly(2-hydroxyethyl methacrylate).
    Zhang B; Lalani R; Cheng F; Liu Q; Liu L
    J Biomed Mater Res A; 2011 Dec; 99(3):455-66. PubMed ID: 21887741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineered endothelial cell adhesion via VCAM1 and E-selectin antibody-presenting alginate hydrogels.
    Rafat M; Rotenstein LS; Hu JL; Auguste DT
    Acta Biomater; 2012 Jul; 8(7):2697-703. PubMed ID: 22504076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of physical and mechanical properties of amphiphilic biosynthetic hydrogels on long-term cell viability.
    Thankam FG; Muthu J
    J Mech Behav Biomed Mater; 2014 Jul; 35():111-22. PubMed ID: 24762858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An in situ forming collagen-PEG hydrogel for tissue regeneration.
    Sargeant TD; Desai AP; Banerjee S; Agawu A; Stopek JB
    Acta Biomater; 2012 Jan; 8(1):124-32. PubMed ID: 21911086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(vinylphosphonic acid-co-acrylic acid) hydrogels: The effect of copolymer composition on osteoblast adhesion and proliferation.
    Dey RE; Wimpenny I; Gough JE; Watts DC; Budd PM
    J Biomed Mater Res A; 2018 Jan; 106(1):255-264. PubMed ID: 28891249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.